Introducing A Modern Software Metric, EVR, for Predictability,
Stability & High-Quality Delivery

Kazuhira Okumoto, Ph.D.
Sakura Software Solutions, LLC

Table of Contents

1. Introduction
Why modern software teams struggle with predictability and why early metrics matter

2. What Is Escape Velocity Rate (EVR)?
Definition, intuition, and how EVR differs from traditional quality indicators

3. Why EVR Matters in Modern Software Development
Complexity, Al acceleration, distributed systems, and the growing defect imbalance

4. How EVR Works

4.1 Defect Detection Rate

4.2 Defect Fix Capacity

4.3 EVR Definition and Equation

5. Interpreting EVR: From Healthy to Out of Control
EVR thresholds, operating zones, and what they mean for delivery risk

6. EVR in Practice: A 20-Developer, 6-Month Project
Industry-based assumptions, calculations, and baseline results

7. EVR Sensitivity Analysis
How small increases in defect rates rapidly change project stability

8. When EVR Goes Bad: What Teams Should Do
Action thresholds and management responses based on EVR ranges

9. Why EVR Is a Perfect Fit for STAR
Automated computation, trend tracking, and actionable insights

10. EVR and Open Defects Across Project Sizes
Large, medium, and small project behavior and late-cycle recovery patterns

11. EVR vs. ROI: Turning Predictability Into Business Value
Linking technical risk signals to financial and operational outcomes

12. Conclusion
How EVR and STAR enable faster, more predictable, higher-quality delivery

Private Communication, 2025

Acknowledgement
References
Abstract

Modern software teams face growing pressure to deliver complex systems faster while
maintaining quality and predictable release schedules. Increasing system complexity, Al-
accelerated development, and distributed architectures are introducing defects faster than teams
can resolve them. At the same time, traditional indicators often surface problems only after
recovery becomes costly and disruptive.

This paper introduces the Escape Velocity Rate (EVR), a quantitative metric that measures the
balance between defect introduction and defect-resolution capacity. EVR provides an early
warning signal of project instability by revealing whether a team is keeping pace with defects or
accumulating risk. Using industry benchmarks and a representative 20-developer project, the
paper demonstrates how EVR behaves across project sizes and defect rates, and explains how
EVR is automated through STAR to enable early intervention, improved predictability, and
measurable operational and financial benefits when combined with ROI analysis.

Keywords: Escape Velocity Rate (EVR), Software Predictability, Defect Management, Software
Reliability

1. Introduction

Software has become the backbone of modern products and services, yet delivering high-quality
software on time is increasingly complex. Development teams are under pressure to move faster
as systems grow larger, more interconnected, and more complicated. Al-assisted development
and distributed edge—cloud architectures have accelerated code production while expanding the
number of potential failure points.

In this environment, organizations need earlier, more reliable insight into whether development
capacity is keeping pace with defect introduction. Traditional signals, such as schedule slips or
test backlogs, reflect problems only after they have already escalated, leaving teams with limited
and costly recovery options.

Escape Velocity Rate (EVR) addresses this challenge by directly measuring the balance
between defect introduction and defect resolution. EVR compares how quickly defects are
detected with how quickly teams can fix them, providing an early, quantitative indicator of
project stability. Implemented through STAR, EVR is automatically computed from real defect
data, tracked continuously, and translated into actionable signals. Together, EVR and STAR
enable teams to identify instability early, take corrective action sooner, and deliver software with
greater predictability and control.

2. What Is Escape Velocity Rate (EVR)?

Private Communication, 2025

Escape Velocity Rate (EVR) is a practical, quantitative metric that measures whether an
engineering team is keeping pace with defect introduction. EVR directly compares how quickly
defects are detected with how quickly the team can realistically fix them. When EVR is low,
defects are resolved faster than they appear, and the project remains stable. As EVR approaches
or exceeds 1, defects accumulate faster than they can be addressed, signaling growing instability
and backlog risk.

Unlike traditional indicators such as missed milestones or late-stage defect spikes, EVR serves as
an early warning signal. It exposes emerging imbalance weeks or months before schedule or
quality problems become visible, when corrective action is still effective and affordable. Figure 1
illustrates the EVR workflow, showing how detected and fixed defect data are transformed into
an EVR score that enables timely, proactive management decisions.

3. Why EVR Matters in Modern Software Development

Software systems are evolving at an unprecedented pace, driven by forces that fundamentally
change how defects are introduced and managed.

Rising System Complexity.

Modern applications contain far more code, components, and integrations than in the past.
Dependencies span internal modules, third-party services, and external platforms, increasing the
likelihood that changes in one area produce unintended effects elsewhere. This growing
interconnectedness makes defect behavior harder to predict and isolate.

Al-Accelerated Development.

Development velocity has increased dramatically with modern tooling and Al-assisted coding.
While productivity improves, code is generated faster than it can be thoroughly reviewed, tested,
and stabilized. Defect introduction accelerates, while validation and correction capacity grow
more slowly, widening the gap between creation and resolution.

Distributed Edge—Cloud Systems.

Today’s software commonly spans cloud platforms, edge devices, and hybrid environments. This
distribution introduces more configurations, execution paths, and failure modes. Many defects
surface only under specific conditions, often late in the cycle or after deployment.

The combined effect of these forces is a steady increase in defect introduction relative to fix
capacity. Without a direct way to measure this imbalance, teams often remain unaware of rising
risk until late-stage testing or production incidents expose the problem. Figure 2 illustrates the
expanding defect surface in modern software systems and highlights the point at which defect
growth outpaces an organization’s ability to detect and correct issues.

Defects Defects EVR Call-to-
o e e

Figure 1. EVR Workflow: From Defect Data to Management Action

Private Communication, 2025

This is where the Escape Velocity Rate (EVR) becomes critical. EVR quantifies the imbalance
between defect creation and resolution, providing an early warning signal of instability. By
continuously tracking EVR, teams gain visibility into emerging risks. They can take corrective
action, such as reallocating resources or adjusting scope, before defect accumulation disrupts
delivery and impacts the business.

4. How EVR Works

At its core, the Escape Velocity Rate (EVR) is a simple comparison of how quickly problems are
appearing in a project and how quickly the team can resolve them. EVR does not rely on
complex assumptions or subjective judgment. Instead, it uses two measurable, operational
quantities that every development organization already tracks.

4.1 Defect Detection Rate

The first quantity is the Defect Detection Rate. This represents the number of defects introduced
or discovered over a given period, typically measured monthly or over a rolling 4-week window.
These defects may come from new development, integration issues, testing activities, customer
reports, or operational use. As systems grow in size and complexity, this rate often increases over
time.

4.2 Defect Fix Capacity

The second quantity is the Defect Fix Capacity. This reflects how many defects the team can
realistically fix during the same time period. Fix capacity depends on available engineering
resources, defect complexity, fix and verification time, and competing priorities such as new
feature development. Unlike defect detection, fix capacity tends to remain relatively stable unless
additional resources or process improvements are introduced.

Defect Surface Area
Where Hardware Meets Software

Figure 2. The Growing Defect Surface in Modern Software Systems

Private Communication, 2025

4.3 EVR Definition and Equation

EVR is calculated by dividing the defect detection rate by the defect fix capacity:

Defects Detected

EVR = Defects Fixed

This simple ratio provides powerful insight. When EVR is less than 1.0, the team is fixing
defects faster than they are being introduced, and the project is generally under control. When
EVR approaches or exceeds 1.0, defects begin to accumulate, signaling growing risk. An EVR
greater than 1.0 indicates that the team is falling behind and that unresolved defects will continue
to build unless corrective action is taken.

By continuously tracking EVR, teams can clearly see whether they are maintaining control or
drifting toward a backlog crisis long before schedules slip or quality issues reach customers.

5. Interpreting EVR Threshold: From Healthy to Out of Control

EVR values fall into distinct ranges that describe the overall health and stability of a software
project. These thresholds help teams quickly understand whether they are operating efficiently,
approaching risk, or already in trouble.

When EVR is below 0.6, the team has more defect-fixing capacity than is currently required. In
this over-capacity zone, defects are being resolved much faster than they are introduced. While
this is a stable state, it also presents an opportunity. Teams in this range may be able to accelerate
delivery, take on additional scope, reduce test cycles, or reallocate effort toward innovation
without increasing risk.

An EVR between 0.6 and 0.8 indicates a healthy, stable operating zone. In this range, defect
introduction and defect resolution are well balanced. The project is under control, backlogs
remain manageable, and quality is predictable. Most high-performing teams aim to operate
consistently in this zone, as it supports reliable release schedules and sustained engineering
productivity.

When EVR rises into the 0.8 to 1.0 range, carly warning signs begin to appear. This is the
caution or warning zone, where instability is emerging. Defects are being introduced at nearly
the same rate they are fixed, leaving little margin for error. Small changes in scope, staffing, or
complexity can quickly push the project into a backlog situation. Without intervention, teams in
this zone often experience growing schedule pressure and late-cycle quality issues.

An EVR greater than 1.0 indicates that the project is out of control. In this state, defects are
accumulating faster than the team can resolve them. Backlogs grow, release dates slip, and
quality problems increasingly reach customers or production systems. At this point, corrective
actions such as increasing fix capacity, reducing scope, or improving defect prevention become
urgent.

Private Communication, 2025

By clearly defining these EVR thresholds, organizations gain a practical, quantitative way to
assess project health and take timely action—before defect accumulation turns into a crisis.

6. EVR in Practice: A 20-Developer, 6-Month Project

To illustrate how EVR works in practice, consider a representative commercial B2B software
project with 20 developers and a six-month delivery cycle. The assumptions used in this example
reflect widely accepted industry benchmarks and are summarized in Appendix A.

Industry data indicates that 25-40% of developer time is typically spent on defect fixing. Using a
conservative midpoint, this analysis assumes 30% of team effort is dedicated to bug fixes,
equivalent to six full-time developers focused on defect resolution. The average defect fix time is
2 days per defect, within the commonly observed 1-3 day range.

With approximately 22 working days per month, a single developer can fix about 11 defects.
Over six months, the team’s total fix capacity is therefore:

e 11 defects x 6 developers x 6 months = 396 defects fixed

On the defect introduction side, a baseline rate of 3 defects per developer per month is assumed.
Because 70% of the team’s effort is devoted to new development, defect introduction is driven
by that portion of the workforce. Total defect introduction over six months is calculated as:

e 3 defects x 20 developers x 6 months x 70% = 252 defects introduced
EVR is computed by comparing defect introduction with fix capacity:
e EVR=252/396=0.64

An EVR of 0.64 places the project in the healthy and stable zone, indicating that defects are
being resolved faster than they are introduced, backlogs remain manageable, and delivery risk is
low.

7. EVR Sensitivity Analysis

This balance is fragile. Even small increases in defect introduction rates can rapidly push EVR
from a healthy state into warning or out-of-control zones. As defect rates rise, from 4 to 7 defects
per developer per month, unresolved defects accumulate late in the development cycle,
increasing schedule risk, costs, and quality issues. Table I illustrates how EVR shifts as defect
introduction increases for a 20-developer, six-month project, while Figure 3 shows how EVR can
deteriorate quickly over time. Together, these examples demonstrate that modest changes in
defect rates can have a disproportionate impact on delivery stability, underscoring the importance
of early visibility and intervention.

Private Communication, 2025

Table I. EVR Sensitivity to Defect Introduction Rates in a 20-Developer Project

Defects / Dev/ Total Defects Introduced Defects Fixed EVR EVR Zone

Month (6 months) Capacity
Healthy /
3 252 396 0.64 Stable
4 336 396 0.85 Warning
Out of
5 420 396 1.06 Control
Out of
6 504 396 1.27 Conirol
7 588 396 148 Severe
Crisis

8. When EVR Goes Bad: What Teams Should Do

EVR is designed to support timely, practical decision-making rather than passive reporting. By
mapping EVR values to clear thresholds, teams can determine when intervention is needed and
how aggressive that response should be. When EVR rises, it signals imbalance early—while
corrective actions are still practical and far less disruptive than late-stage recovery.

As summarized in Table Il, an EVR greater than 1.0 requires immediate stabilization, including
slowing new feature work and prioritizing defect reduction and root-cause analysis. An EVR
between 0.8 and 1.0 signals emerging instability and calls for proactive measures such as
increasing bug-fix capacity or tightening quality controls. When EVR remains below 0.8, teams
can continue balanced feature development while sustaining effective quality practices.
Together, these thresholds transform EVR into a clear, actionable framework for maintaining
delivery stability as project conditions change.

Escape Velocity Rate (EVR)

1.6

14 Out of Control

S
o
L [PUCSSUNEI (o NERE S SSNCOCIGES NEg—
N

08 bom-od o~ __Warning_ ,-
0.6 — b

Under Control

0 0.5 1 1.5 2 2

Years from Now

L

Figure 3. Rapid Escalation of EVR Over Time as Defect Rates Increase

Private Communication, 2025

Table II. EVR Thresholds and Recommended Actions

EVR Project Recommended Action

Range State

EVR > Out of Stop or significantly slow new feature development;

1.0 Control prioritize root-cause analysis, defect prevention, and system
stabilization.

0.8< Warning Increase bug-fix capacity; rebalance engineering effort;

EVR < Zone implement corrective quality actions.

1.0

EVR < Healthy / Continue balanced execution of feature development and

0.8 Stable quality improvement.

9. Why EVR Is a Perfect Fit for STAR

EVR delivers the greatest value when it is computed continuously from real project data, which
is where STAR plays a critical role. STAR calculates EVR directly from defect detection and
closure data and tracks it over time, allowing teams to observe stability trends as they develop
rather than after problems surface.

By monitoring EVR trends, teams gain visibility into whether defect introduction is beginning to
outpace fix capacity, enabling corrective action before schedules or quality are impacted. EVR
also provides a clear view of how engineering effort is balanced between feature delivery and
defect resolution, supporting more informed decisions about scope, staffing, and release
readiness.

Together, STAR and EVR provide a practical foundation for delivering software with greater
predictability, lower risk, and higher confidence.

10. EVR and Open Defects Across Project Sizes

Figure 4 illustrates how EVR evolves across projects of different sizes, including large and
medium projects with six-month release cycles and small projects with three-month cycles. In all
cases, EVR is calculated using a rolling four-week window to reflect current conditions. A
consistent pattern emerges: EVR remains in the warning or out-of-control range for much of the
development cycle, only beginning to improve in the final weeks before release. At the same
time, unresolved defect counts continue to grow.

The implication is clear. Although teams often appear to recover late in the cycle, that recovery
comes too late to prevent defect accumulation and residual risk at delivery. This explains why
many projects meet release dates but still ship with unresolved issues and compromised quality.
By making this pattern visible early, EVR enables teams to intervene sooner and stabilize
delivery before last-minute recovery becomes the only option.

Private Communication, 2025

vs. Open Defects - Med roje
EVR vs. Open Defects - Large Project EVR vs. Open Defects - Medium Project

EVR vs. Open Defects - Small Project
15 300
P 350

| 16
Overall EVR=1.34 |
23 ‘I iz B Overall EVR = 0,96 - ‘u\ ! || "
300 1 =0 . '
21 | ﬁ W, 20 \ o o
X | | - \ \ A L
19 | 11 0 \ W00 » | | ‘! 1 .|
AR\ o i [A) B s AOVAYT nj
| a0 5 = + I g & g [\]
215 e a 3 ", i A 02 & |- \ VO -
13 U I‘ f 0% 10 |==—=-=-=- ﬁ-+1r" ----- ,Z"-- fx- g L e | e 6 &
A 3 B A/ \[' 100 © f \o o
1 VN 100 \A A / \ | 4
o9 T %" it lefutntnted atutele 08 V\/ Y, 05 \
V\ 5 v ¥ 50 L i
LY
. \ . 00 00 S
0 /2019 ; a0
1212018 1202009 3/11/2019 4{30/2019 6/15/2019 B/14/2019 10/13/2019 12/12/2019 1/1/2013 1/2003 21 /12019
—e—fVR == EVR Threshold Delivery Open Defects —+—EVR Thrashold = = EVR Threshold - - - Dellvery —— Open Defets —+—ER = = EVR Threshold Delivery —s—Qpen Defects

Figure 4. EVR and Open Defect Trends Across Large, Medium, and Small Projects

11. EVR vs. ROI: Turning Predictability Into Business Value

EVR and ROI address different but tightly connected questions. EVR identifies predictability
risk by revealing when defect introduction begins to outpace a team’s ability to fix defects, while
ROI quantifies the business impact of actions taken to restore balance. Used together, they link
engineering signals to financial outcomes, enabling timely, justified intervention.

Table III illustrates this linkage for a representative 20-developer project. As defect detection
increases from 3 to 5 defects per developer per month, EVR rises from 0.64 (healthy) to 1.06,
indicating an out-of-control state where defects accumulate faster than they can be resolved. This
shift reflects a loss of adequate fix capacity and growing delivery risk.

By adopting STAR, teams recover usable engineering capacity without adding headcount.
Improved prioritization, reduced rework, and earlier intervention effectively increase bug-fix
capacity from 6.0 to 7.5 developers, bringing EVR back down to 0.85—near the healthy target of

approximately 0.8. This recovered capacity is the operational bridge between EVR improvement
and financial return.

Table III. Linking EVR Improvement to Financial and Operational ROI (20-Developer

Project)
Metric Before STAR After STAR
Defect Detection Rate 3 — 5 defects/dev/month Stabilized
Escape Velocity Rate 0.64 — 1.06 (Out of .
(EVR) Control) 0.85 (Recovering)
Bug-Fix Developers 6.0 7.5 (effective)
Net Savings (2 Years) — $273,500
Developer Cost = $180,000 / year
Assumption
Effective Capacity Gained — 1.5 Developers
Project State Healthy — Crisis Near-Heal(;:hS}; (Target =

Private Communication, 2025

10

Rising System Complexity 1
(More Code, AI, Integration)
i

Recovered Engineering Capacity

(Fewer Late Defects,

Increased Defect Detection Less Rework)

* !
EVR Increases (EVR > 1.8)
Predictability Risk

Improved EVR (Toward @.8)
Stable Delivery
: i
STAR Early Detection & Analytics Financial Impact (ROI)
+ Weekly EVR Tracking
* Root-Cause Visibility
» Left-Shift Quality
i

+ Lower Rework Cost
* Fewer Delays

¢ Higher Productivity

Figure 5. How EVR Translates Predictability Risk Into Measurable ROI Using STAR

From a business perspective, the reclaimed capacity translates directly into measurable ROI.
Over two years, the recovered 1.5 developer equivalents amount to $273,500 in net savings,
based on a fully loaded annual developer cost of $180,000. Figure 5 summarizes this causal flow,
showing how early EVR detection enables corrective action that stabilizes delivery and converts
predictability risk into tangible financial benefit—without increasing headcount.

12. Conclusion

Modern software teams operate under growing pressure from rising system complexity, Al-
accelerated development, and aggressive delivery schedules. These forces often cause defects to
accumulate faster than teams can resolve them, creating hidden instability that surfaces late and
drives costly recovery. Escape Velocity Rate (EVR) addresses this challenge by providing a
clear, quantitative signal of whether a project is stable or drifting toward a defect backlog and
delivery risk.

STAR operationalizes EVR by computing it continuously from real defect data and tracking
trends over time. This early visibility enables teams to rebalance feature work and defect
resolution before problems escalate, improving release readiness and reducing late-stage
firefighting. Together, EVR and STAR help organizations recover engineering capacity, lower
rework, and achieve measurable business outcomes—delivering faster, more predictable, higher-
quality software without adding headcount.

Acknowledgement
The author gratefully acknowledges Mike Rossi for conceptualizing the EVR and ROI

framework. Michael Okumoto, Rashid Mijumbi, and Joe Good implemented EVR and ROI
within STAR.

Private Communication, 2025

11

References

[1] C. Jones, Applied Software Measurement: Global Analysis of Productivity and Quality, 3rd
ed. New York, NY, USA: McGraw-Hill, 2008.

[2] IBM Systems Sciences Institute, “The Cost of Defects in Software Development,” IBM
Corp., 2010.

[3] Microsoft Engineering Excellence, “Engineering Postmortems and Quality Metrics,”
Microsoft Corp., 2018.

[4] B. Beyer et al., Site Reliability Engineering: How Google Runs Production Systems.
Sebastopol, CA, USA: O’Reilly, 2016.

[5] NASA Software Engineering Laboratory, “Software Engineering Metrics and Models,”
NASA GSFC, 2007.

[6] N. Forsgren, J. Humble, and G. Kim, Accelerate, Portland, OR, USA: IT Revolution, 2018.
[7] CA Technologies, “Defect Resolution Benchmark Studies,” CA Tech., 2016.
[8] CISQ, “The Cost of Poor Software Quality,” CISQ/OMG, 2020.

Appendix A: References & Industry Benchmark Summary (Executive View)

Table A-1. Industry Benchmark Sources Supporting EVR and ROI Assumptions

Ref Organization Publication Benchmark Used in Key Insight
Years EVR /ROI
[1] Capers Jones 1996, 2008 Defects/dev/month, 25-40% of dev time spent
rework %, late defect cost on bugs; late fixes cost
exponentially more
[2] IBM 2010 Cost escalation by Production defects cost
lifecycle phase 30x—100x more than early
defects
[3] Microsoft 2018-2019 Large-scale defect trends, Predictability reduces post-
recovery cost release incidents
[4] Google 2016, 2020 Reliability capacity vs. Stability requires balancing
change velocity defect load and fix capacity
[S] NASA SEL 2007 Defect density, reliability = Measurement enables
growth predictability and control
[6] DORA 2018-2023 Delivery performance & Early quality improves
stability speed and business
outcomes
[71 CA Tech 2016 Defect fix time Average fix time ~ 1-3
days/defect
[8] CISQ 2020 Economic impact of poor Trillions are lost annually

quality

Private Communication, 2025

due to poor software
quality

	Table of Contents
	Abstract
	Keywords: Escape Velocity Rate (EVR), Software Predictability, Defect Management, Software Reliability
	1. Introduction
	2. What Is Escape Velocity Rate (EVR)?
	3. Why EVR Matters in Modern Software Development
	The author gratefully acknowledges Mike Rossi for conceptualizing the EVR and ROI framework. Michael Okumoto, Rashid Mijumbi, and Joe Good implemented EVR and ROI within STAR.
	References

