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Abstract

In an era where AI, automation, and robotics are pervasive, system failures can
lead to severe repercussions, making the reliability of software and hardware cru-
cial. Current reliability approaches fall short in providing comprehensive models
for the operational phase of software. This chapter introduces a unified reliability
model that integrates software and hardware components, emphasizing the oper-
ational phase of the software lifecycle. We also present FUSION, a cloud-based
digital platform that leverages our proposed model. FUSION offers a cohesive
user interface for running various system reliability configuration scenarios, pro-
viding metrics that inform design decisions. Beyond issue detection, FUSION
facilitates a proactive approach to identifying and mitigating potential issues,
thereby enhancing overall system reliability and customer satisfaction. Our work
bridges the gap in existing reliability models and delivers a robust solution for
the dynamic technological landscape.

Keywords: Reliability modeling, Operational phase, Software and hardware failures,
Cloud

1 Introduction

Ensuring software and hardware reliability is crucial in a world increasingly reliant
on Al automation, and robotics [1]. The focus on reliability is essential because even
minor defects can lead to significant disruptions. Numerous models [2-11] exist for pre-
dicting software defects during coding and testing phases. These and other models are
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summarized in Appendix A. However, a significant gap still remains in the operational
phase—when the software is deployed to customers. This phase represents real-world
use of the software, making it particularly critical. Defects that arise during this phase
can lead to system downtime and negatively impact users. Moreover, because software
is typically deployed on hardware, failures can still occur if the underlying hardware
fails, even when the software is reliable. Therefore, it is necessary to analyze system
reliability, considering both software and hardware components. On its own, hardware
reliability during the operational phase is well-studied [12-19]. However, studies that
consider an integrated system involving both software and hardware are limited. The
interaction between software and hardware adds complexity to reliability assessments,
necessitating comprehensive models that can account for potential failures in both
domains. Integrating these aspects is essential for developing more robust systems that
can withstand the challenges of real-world applications.

In this chapter, we develop and implement cutting-edge algorithms in FUSION’s
innovative cloud-based tool, which plays a pivotal role by combining software and
hardware models to analyze defects and failures during the operational phase. Our
research demonstrates that software failure rates can be modeled with a constant rate
during this phase, aligning with established hardware failure models to create a unified
reliability model. This unified model not only addresses a significant gap in the field
but also has the potential to revolutionize how we approach software and hardware
reliability. In the rapidly evolving technological landscape, this research is essential,
given the interconnected failures of software and hardware. This, in turn, enhances
system performance and ultimately improves customer satisfaction.

Our rigorous research process begins by correlating software reliability growth
models with the hardware bathtub curve in Fig. 1. By focusing on a constant defect
growth rate during the operational phase, we align it with the flat phase of the hard-
ware curve. Using observed software failure rates during customer operations helps
establish this correlation. We propose integrated models, defining system reliability
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through reliability block diagrams (RBDs) [17, 18, 20] and operational reliability and
availability metrics.

FUSION, built with advanced analytics and visualization techniques, forecasts
software failure rates by incorporating defect and failure data. A key feature is the
graphical editor, which allows users to create system RBDs, including both software
and hardware components. This tool accelerates system reliability evaluation, identifies
bottlenecks, aids in practical improvements, and enhances overall system performance.

Our research is driven by a clear goal: revolutionizing software quality and reliabil-
ity. We aim to align software defect modeling with hardware failures during customer
operations. The comprehensive digital tool we propose, FUSION, will empower practi-
tioners to improve reliability, leading to greater customer satisfaction and profitability.
This is not just a research project; it’s a mission to reshape the way we think about
software and hardware reliability, and we invite you to be a part of it.

The main contributions of this chapter are three-fold: (1) a combined software and
hardware reliability model, (2) algorithms for automated reliability analysis, and (3)
a digital tool for system-level reliability assessments.

2 Fusion System Architecture

FUSION streamlines the entire workflow, from data extraction and pre-processing to
core analytics and post-processing. Figure 2 presents the high-level architecture of
FUSION, which is built on the AWS platform. FUSION employs APIs (such as Flask)
to gather data from various defect-tracking tools and consolidate the data into two
databases—PostgreSQL and NoSQL (DynamoDB)—to optimize performance. Prior to
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storage, the data undergoes pre-processing, which involves aggregating it into weekly
or specified time frames and preparing the necessary input for the core analytics
engine that generates predictions. A critical part of pre-processing is ensuring data
consistency both across different projects and within the same project over multiple
releases. For example, pre-processing may include:

® Standardizing database field and value mappings, as different projects or databases
might use varying field names for the same attributes (e.g., priority vs. severity).

e Mapping certain field values to specific categories, such as assigning a defect to a
geographic region instead of an organizational unit.

® Checking defect properties to detect duplicates or defects from other releases aids
in quality control and project management. The core analytics engine is developed
using the Python Scientific Stack, while the user interface is built using JavaScript
ES6 (React). Terraform AWS manages the system’s infrastructure as code (IaC).

3 Fusion Overview

This section will provide an overview of FUSION, a comprehensive cloud-based tool
that enhances system reliability (see Figure 3). FUSION comprises two critical com-
ponents: software failure rate prediction model and an interactive graphical editor,
GRED, for constructing various reliability block diagrams (RBDs).

3.1 Software customer-found defect prediction

The operational phase of software usage can be divided into distinct periods: early cus-
tomer testing, customer testing, post-deployment, and customer migration to the next
release. Each of these periods exhibits varying rates of defect identification (see Figure
4). To capture this variability, we aim to construct a defect trend model that spans
the entire operational phase, represented as a sequence of empirically derived straight
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Fig. 4: Software defect curves: Internal vs. customer

lines. The primary technical challenge is developing an algorithm that autonomously
identifies the transition points (inflection points) between each straight line. This algo-
rithm must adapt to the distinct patterns within the data and function seamlessly in
real-time as new defect data becomes available.

We have developed an algorithm that automatically detects inflection points
and provides a segmented linear representation of software defects throughout the
operational phase. A segmented linear equation is expressed in mathematical form as:

m(z) =m(xj_1)+6; (x — mj,l) Va1 <z < (1)

Figure 5 showcases these sequential lines and visually depicts the algorithm’s result.
For enhanced comprehension, it also offers a weekly breakdown of the trend. Details
of the algorithm are provided in Appendix B.

This algorithm’s applicability significantly extends beyond software, including
hardware failure data. Additionally, we will compare the observed hardware failure
rate against the rate projected from the bill of materials (BOM) to provide comprehen-
sive insights. This approach helps accurately model defect trends and ensures timely
and effective defect management throughout the software lifecycle.

3.2 Software Failure Rate Prediction

FUSION introduces innovative methods for predicting software defects and failures,
demonstrating that the software defect and failure rates remain constant during the
operational period. This capability is crucial as it aligns software reliability modeling
with established hardware reliability models, providing a unified approach to system
reliability. The analytics for predicting software defects are robust enough to be applied
to hardware field failure data, offering a versatile solution for reliability analysis across
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different system components. We have developed an innovative algorithm to predict
software failure rates during the operational phase, using a transformation function
that maps the defect prediction curve onto the software failure curve. Detailed informa-
tion about the algorithm is provided in Appendix C. Figure 6) illustrates the predicted
software failure curve alongside the actual data, presented in both cumulative and
weekly views. It demonstrates that the software failure rate remains constant after
deployment. This method has been applied to data from several projects, and all cases
consistently confirm these findings. One advantage of this method is its effectiveness
even with a very small number of failures, such as fewer than 10.

3.3 Interactive Graphical Editor (GRED)

GRED is an interactive graphical editor embedded within FUSION that allows users
to construct detailed RBDs for software and hardware components. GRED features a
built-in function for automatically calculating reliability metrics for combined software
and hardware systems and individual components. This functionality simplifies the
complex reliability assessment process, enabling users to quickly design and build more
reliable systems.



3.4 System Design and Building

FUSION empowers users to design and build reliable systems by integrating advanced
analytics and interactive modeling tools. The software failure rate prediction com-
ponent provides accurate defect and failure rate forecasts, crucial for preemptive
maintenance and system optimization. GRED’s intuitive interface and automatic cal-
culation features facilitate the creation of comprehensive RBDs, ensuring that users
can effectively evaluate and improve system reliability.

3.5 Summary and Future Discussions

Figure 3 summarizes FUSION’s input and output data, analytics, and GRED. This
figure illustrates how FUSION integrates data processing and visualization to provide
a holistic view of system reliability.

In section 4, we will delve deeper into the specifics of these components. Specif-
ically, we discuss GRED, highlighting its features, user interface, and the automatic
calculation of reliability metrics.

By combining advanced predictive analytics with an intuitive graphical interface,
FUSION offers a powerful tool for system reliability engineers. It enables them to antic-
ipate and mitigate potential failures effectively. This integrated approach enhances
the reliability of individual software and hardware components and ensures the overall
robustness of the entire system.

4 Interactive Graphical Editor (GRED) for
Reliability Block Diagrams (RBDs)

Reliability engineers often use reliability block diagrams (RBDs) to model and analyze
complex systems. RBDs visually represent the system’s configuration and compo-
nents, simplifying system reliability calculation through series and parallel equations.
This section outlines the initial design of a digital application, GRED, that inte-
grates software and hardware components, enabling the interactive creation of system
RBDs. GRED will provide users with several preconfigured RBD templates, including
a single-unit system, a two-unit active-standby system, and a two-unit active-active
load-sharing system, as illustrated in Fig. 7. By clicking a template, it will ask for input
data of failure rate and recovery time for hardware and software. Once the input data
is completed and the submit box is clicked, it will calculate and display the outputs of
reliability metrics. We will discuss the process of creating these diagrams, the required
inputs, and how to derive reliability metrics for each configuration. This tool aims to
streamline the design and analysis process, making it easier for users to evaluate and
enhance system reliability.

4.1 Reliability metrics

The failure rate measures how often a system, component, or device fails over a
specified period. It is typically denoted by the symbol A and expressed as the number
of failures per unit of time (e.g., failures per hour, per day, or per year). The failure



rate is a key parameter in reliability engineering and plays a crucial role in assessing
and predicting system reliability and availability. Understanding and calculating
the failure rate is fundamental for designing, maintaining, and improving the reliability
of systems and components, providing engineers with vital information for their work.

A low failure rate indicates that the system or component is reliable and expected
to fail infrequently. A high failure rate means the system or component is less reliable
and is expected to fail more frequently. There are two types of failure rates. The
constant failure rate, often seen in electronics and mechanical systems, is assumed to
be constant during the useful life period (the middle part of the bathtub curve in Fig.
1). On the other hand, the time-varying failure rate is when failure rates may change
over time, especially when systems are subject to wear-out (increasing failure rate) or
early failures (decreasing failure rate).

The failure rate is used in calculating the reliability function (R(t)), which is the
probability that a system operates without failure over a specified period of time ¢.
For example, the reliability function R(t) for a system with a constant failure rate
follows the exponential distribution:

R(t) = (2)
Mean Time to Failure (MTTF) and Mean Time Between Failures (MTBF) mea-
sure systems or components’ reliability. However, it’s crucial to understand that they
differ in their application and interpretation. MTTF represents the average time a
non-repairable system or component operates before it fails. It is used for systems or
components that are non-repairable, meaning that when they fail, they are replaced
rather than repaired. MTTF indicates the expected operational lifespan of a compo-
nent before it fails. A higher MTTF value implies that the component is more reliable
and can be expected to last longer. It is calculated as follows:

MTTF = /0 h R(t)dt (3)

For a constant failure rate, the MTTF is given by:

1
MTTF = X (4)
MTTF is used for components like light bulbs, batteries, and other products that
are typically discarded or replaced after failure.
It is calculated as:

MTTF = Total Operational Time

Number of Failures (5)

MTBEF represents the average time between successive failures of a system that
can be repaired and returned to service. It is used for repairable systems like servers,
machinery, and other systems routinely repaired and returned to service. MTBF mea-
sures when a system starts functioning after a repair and lasts until the subsequent
failure occurs. MTTR (Mean Time to Repair) is the average time to repair and restore



the system to operational status after a failure. MTBF is the sum of MTTF and
MTTR for a repairable system:

MTBF = MTTF + MTTR (6)
A higher MTBF value indicates that the system is more reliable because it runs longer
on average between failures. It helps plan maintenance schedules and estimate system
uptime.

Availability measures a system’s ability to perform its intended function when
needed. It is expressed as the proportion of time that a system is operational and
ready for use compared to when it is expected to be available. Availability consid-
ers the system’s uptime and downtime, accounting for maintenance, repairs, or any
other factors that may cause the system to be non-operational. The basic formula for
availability (A) is:

Uptime

(7)

- Uptime + Downtime
or, equivalently:
MTTF
A= 8
MTTF + MTTR (8)

High Availability (close to 1) indicates that the system is usually operational with

minimal downtime. High availability systems are often designed to ensure that the

probability of being down is very low. Low availability (closer to 0) indicates that the

system is down frequently or has long repair times, reducing operational time.
Availability is applied to the following areas:

e System Design: Used to evaluate and design systems that need to meet specific oper-
ational availability requirements (e.g., telecommunications, military, and healthcare
systems).

® Maintenance Planning: Helps optimize maintenance schedules and resources to
maximize the operational time of equipment.

e Service Level Agreements (SLAs): Often expressed in availability terms (e.g., 799.9%
or three 9s uptime”) to set expectations for system performance and reliability.

Availability is a critical metric in industries where continuous operation is essential
and minimizing downtime is a priority.

4.2 Templates for reliability block diagram

The following three configurations are considered for the Phase I development. See
Figure 7. Other configurations will be included in the Phase II development.

In table 1 we show details of how FUSION metrics: failure rate (A), Mean Time To
Failure (MTTF), Reliability (% number of failures in one year), Mean Time between
Failures (MTBF), Mean Time to Repair (MTTR), and Availability are determined
for software, hardware, and system (HW + SW).

4.2.1 A single-unit system with software and hardware

Fig. 7 highlights GRED’s basic templates. Selecting the appropriate template displays
a single-unit RBD with software and hardware components on the screen. GRED then



CONFIGURATION A CONFIGURATION B CONFIGURATION C

2-Unit: Active Standby 2-Unit: Active Active

Fig. 7: Set of Basic Templates/Configurations for the GRED

Single Unit

Table 1: FUSION Output Metrics Calculation Formulas for Configuration A

Formulas
Metric
Hardware Software System
Failure Rate | A\ Asw Ahw + Asw
Reliability e~ Anwt g~ Aswt e Asust
1 1 1 (A A
MTTR e e e = (e + 02 Ay

& u is the repair rate and is measured in repairs per unit time

prompts for input data, including the software and hardware failure rates and recovery
times. Software and hardware failure rates are constant during the operation phase,
denoted by Ay, and Apy, respectively. We can treat the software and hardware as
components in a series system for a single-unit configuration.

In a series system, all components must function correctly for the entire system
to operate. In general, we can express the reliability of a series system as a product
of the reliability of individual components. Mathematically, the reliability for a series
system with n component with the reliability of component ¢, denoted by R;(t), can
be expressed as:

Ruya(t) = [[ Bilt) (©)

i=1

10



Table 2: User Inputs for Configurations A, B and C

Input Notation Hardware Software
Failure rate (failures/year) A 0.15 0.6
Manual recovery time (minutes)” e 240 120

“Includes time for diagnostics, repair or replacement, hardware
reboot for hardware recovery; troubleshooting, quick software fixes,
software reboot for software recovery

Table 3: FUSION Outputs for Configuration A

Metric Hardware Software System (SW + HW)
Failure rate  0.15 0.60 0.75
MTTF 6.6667 1.6667 1.3333
Reliability 86.1% 54.9% 47.2%
MTBF 6.66671 1.6669 1.3336
MTTR 240 120 144
Availability  99.993% 99.986% 99.979%

For exponential distribution with a failure rate \;
R(t) = e M (10)

We have
Ryys(t) = e~ iz Mt (11)
In other words, the system failure rate is a sum of the failure rates of individual

components.
n

Aoys = D A (12)
i=1
The system failure rate, denoted by Agys, is the sum of the failure rates of the software
and hardware, expressed as (13)

)\sys = Asw + Ahw (13)

Mean Time to Failure (MTTF) applies to non-repairable items and indicates the
expected operational lifespan before a product fails. For a constant failure rate, MTTF
can be calculated as the inverse of the failure rate, Agys:

1
MTTF,,, = —

/\sys (14)

Equation (14) can be applied to both software and hardware. System reliability
measures the probability that a complex system, composed of multiple components,
will function without failure over a specified period. Different ways to calculate system
reliability depend on the configuration and components’ characteristics. We assume

that time to failure follows an exponential distribution with a constant failure rate

11



Asys- The reliability of a system with the failure rate of Ay, during t year can be
calculated as:
Ryys(t) = e Mewet (15)
In a series configuration with repairable units, the system fails when any one of the
three units fails. Thus, MTTR accounts for the weighted contributions of the repair
times of individual components, assuming each has a different repair rate pu;, failures
repaired per unit time. MTT R;, the mean time to repair unit 4, is the reciprocal of the
repair rate: MTTR; = 1/p;. Since the system fails when any one of the units fails, the
MTTR for the system is the expected repair time, considering the probability of each
unit failing, A;/Asys. The MTTR for the system is the weighted sum of the individual
repair times, weighted by the probability of each unit failing:

MTTR,,, = Zn: ( AA x ui) (16)
—1 isys i

i—
The system’s MTBF can be calculated using (6) by substituting (14) and (16).

We introduce the expected repair or recovery time to calculate the system avail-
ability: 1/, for software and 1/pp,, for hardware, respectively. The average system
recovery time, MTT Ry, can be found as the weighted sum of the failure rates:

1 Asw Ahw
MTTRS o = — Hsw Hhw (17)
Y Hsys Asys

In practice, we measure the downtime in minutes. The annual downtime is adjusted
accordingly. The system availability is calculated using (8) by substituting (14) and
(17):

1
o (18)
Asys Hsys

The above system reliability metrics can be derived separately from (14) through
(18) for software and hardware. Once the user input data is completed (see Table 1),
FUSION will automatically compute the reliability metrics and display the table.

Table 1 summarizes the formulas for the reliability and availability metrics for
Configuration A. Table 3 shows the Fusion output of the metrics.

Asys =

4.2.2 A two-unit active-standby (cold) system

To calculate the MTTF for a two-unit active-standby system, we consider each unit’s
failure rate and the fact that the system switches to the standby unit when the active
unit fails. The following assumptions and definitions are made:

e Each unit has a failure rate of A (failures per unit time).

® The units are identical and independent.

e The system is configured so that one unit (Unit A) is active while the other (Unit
B) is in standby mode, and the standby unit becomes active immediately upon the
failure of the first.

12



Table 4: FUSION Output Metrics Calculation Formulas for Configuration B

Formulas
Metric
Hardware Software System
Failure Rate 2 x Ahw 2 x Asw 2% ()\hw + )\sw)
1 1 1
MTTF A o .
Rehablhty 672)\h“’t 672)‘5wt 6*2)\5y5t
MTBF MTTF,., MTTE,, MTTF,y,
Apw Asw Asys
L 1 1 (Dnw 4 Asw
MTTR ) Hsw Hsys B (/“Lw + Hsw )/Asys
A Asys
14 chw 14 Asw 1428y
AVailability Ehw 5 Bsw - Hsys
2Ap Ahw 2Asw Asw. 2Asys Asys 2
e o) 14 aeio(Gae)” 14T sa(Goe)

& i is the repair rate and is measured in repairs per unit time

Table 5: FUSION Outputs for Configuration B

Metric Hardware Software System (SW 4+ HW)
Failure rate  0.15 0.60 0.75
MTTF 13.333 3.333 2.6667
Reliability 99.0% 87.8% 82.7%
MTBF 13.334 3.334 2.6669
MTTR 240 120 144
Availability  99.997% 99.993% 99.990%

® We assume that the switch from the standby to active unit happens without delay
and that the switching mechanism is 100% reliable.

® The standby unit has a negligible failure rate while in standby mode, a cold standby
units (ideal standby assumption).

Each unit’s MTTF is 1/X since MTTF is the reciprocal of the failure rate from
(3). To calculate the system MTTF, we consider two stages: 1) The time until the first
unit fails (the active unit) and 2) The time until the second unit (standby) fails after
taking over. Since both units have the same MTTF and the above stages are mutually
exclusive, the system MTFF is the sum of the MTTFs of both units:

1 1 2

This result indicates that the MTTF of the two-unit active-standby system is
double that of a single unit with the same failure rate, reflecting the added reliability
of having a backup unit ready to take over. The system reliability function of this

13



configuration is derived as follows. The system reliability, Rsys(t), is the probability
that either 1) Unit A survives for the entire duration ¢, or 2) Unit A fails at some time
t1, and then Unit B takes over and survives for the remaining time.

Case 1: Unit A Survives Entire Duration t: The probability that Unit A does not
fail by time ¢ is

Ra(t) =e (20)

Case 2: Unit A Fails, and Unit B Takes Over: By creating the joint probability
that Unit A fails at time ¢; and Unit B operates successfully for the remaining time
(t — t1) and Integrating over all possible failure times for Unit A with ¢; from 0 to ¢,
we derive the probability of Case 2. We can then derive the system reliability as the
sum of the probabilities of the two cases:

Rgys(t) = e M(1 + Xt) (21)

This function shows that the reliability of a two-unit active-standby system is higher
than that of a single-unit system because the standby unit provides redundancy, reduc-
ing the likelihood of system failure over time. Substituting (21) into (3), MTTF for
this configuration is derived as the same as (19).

To calculate the availability of a two-unit active-standby system, we need to
consider its MTBF and MTTR. We make the following additional assumptions.

® A repair rate is p (repairs per unit time). MTTR for each unit is:
1
MTTR = ~ (22)
1

® The system only becomes unavailable when the second unit fails before the first
unit can be repaired.

Substituting (19) and (22) into (7):

>
—~
[\
w
=

Availability =

>
+
==

where % + i is MTBF. Simplifying the expression:

2u

Availability = DY
L

(24)

Reliability and availability metrics can be calculated for software, hardware, and sys-
tems using respective A\ and p. Tables 4 and 5 illustrate the formulas and outputs
for the same input data as in Table 2. There has been a significant improvement in
reliability and availability over a single-unit configuration.

4.2.3 A two-unit active-active load-sharing system

In this configuration, both units are active simultaneously and share the system’s load
equally or in a balanced manner. Both units work together to process the workload,

14



Table 6: FUSION Output Metrics Calculation Formulas for Configuration C

Formulas
Metric
Hardware Software System

Failure Rate )\hw Asw >\sys = Aw + >\sw

2 2 2
BFIELLE! T Xew Xov:
Rehabihty (1 + Ahwt)ei/\huﬂ5 (1 + Aswt)ei)\swt (1 + )\syst)efksyst
MTBF MTTFpy + MTTRpy MITTFg, + MITTRs, MITTFs+ MTTR,,s

1 1 1 _ (Qhw Asw.
MTTR Hhw Hsw Hsys - (I»L:Ij + Hsw )/)\Sys

. o1 MTTFsys

Availability | 2ZTFun MTER WMTHF

& 1 is the repair rate and is measured in repairs per unit time

Table 7: FUSION Outputs for Configuration C

Metric Hardware Software System (SW + HW)
Failure rate 0.30 1.20 1.50
MTTF 3.3333 0.8333 0.6667
Reliability 74.1% 30.1% 22.3%
MTBF 3.3336 0.8334 0.6668
MTTR 240 120 144
Availability 99.993% 99.986% 99.979%

distributing the tasks to balance the load. For simplicity, we assume that if one unit
fails, the workload will be lost until it is recovered. If the load distribution is 50-50,
the system will lose 50% of the total load. It is called a partial failure. Essentially, two
units are operating independently with their assigned workload. Adding another unit
enhances the system’s performance.

The other option is for the other unit to continue operating, but it will need to take
over the entire load, potentially increasing its workload. This setup is designed for high
availability and performance, as it maximizes resource utilization by leveraging both
units simultaneously. Note that a two-unit active-active system is intended for load
distribution and efficiency, while a two-unit parallel system focuses on redundancy
and reliability. We will consider this option in future work.

To calculate the availability of a two-unit active-active system, we must consider
that the system continues to function at a 50% capacity even if one unit fails. We have
a few key assumptions:

15




e Each unit has an individual failure rate A (failures per unit time) and a repair rate
 (repairs per unit time). MTTR = 1/p.

® The failure rates of the units are independent, and repairs occur immediately when
a unit fails.

The system can be in three possible states: both units functioning (State 1), one
unit functioning (State 2), or System down (State 3).

1. Both Units Functioning (State 1): The failure rate for this state (where either unit
can fail) is 2). This is the transition rate from State 1 to State 2.

2. One Unit Functioning (State 2): If one unit fails, the system still functions at a
reduced 50% capacity. The system remains in this state until either: (a) The failed
unit is repaired, returning the system to State 1. The transition rate is p. (b) The
remaining operational unit fails, causing total system failure, State 3. The transition
rate from State 2 to State 3 is A since only one unit operates.

3. System Down (State 3): If both units fail, the system is unavailable. The repair pro-
cess continues until one failed unit is repaired, at which point the system transitions
back to State 2 at a rate of pu.

To calculate the steady-state probabilities, we define P;, P, and P as the prob-
ability of the system being in State 1, State 2, and State 3, respectively. Transition
rate equations at State 1 and State 3 are derived as:

The sum of all probabilities must equal 1:

P+P+P=1 (27)
Solving the equations (25), (26), and (27), we have the steady-state probabilities:

1

Pr= e (28)
2\
P2:7P1 (29)
A A 2) 272
P3:7P2:7X?P1:?P1 (30)

H H
The system is available in either State 1 (both units functioning) or 50% of State
2 (one unit functioning). Therefore:

Availability = P1 + 05P2 (31)

Substituting (28) and (29) into (31), we have the final availability:

1+
Availability = (32)
1+ 2
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To calculate the MTTF for a 2-unit active-active load-sharing system, we consider
that both units operate simultaneously and share the load. When one unit fails, the
system is regarded as a partial failure. Since each unit’s failure rate is A, the failure
rate of the two units is 2A. MTTF is a reciprocal of the failure rate:

1
MTTF = o (33)

Since A = MTTF/MTBF, MTBF can be calculated as: MTBF = MTTF/A. Reli-
ability and availability metrics can be calculated for software, hardware, and systems
using respective A and p. Tables 6 and 7 illustrates the formulas and outputs for the
same input data as in Table 2. It shows that this configuration will double the capacity

while maintaining availability. Introducing the load rebalancing feature, where when
one unit fails, the remaining unit takes over the entire load, will improve reliability.

4.3 Combinations of the Basic Configurations/Templates

Software

Active

Active

Fig. 8: A-C-A Configuration: GRED for two single-units and one two-unit active-
active configuration

Each template requires specific starting and ending points to construct a network of
templates. The network begins at the Start node and ends at the End node. Complex
systems may combine series and parallel configurations. The reliability of such systems
can be calculated by breaking them down into more straightforward series and parallel
components and then combining their reliabilities using appropriate formulas. Sorting
them topologically simplifies the metrics calculation. Figure 8 shows an example with
three configurations: 2 single-unit configurations, a two-unit active-active load-sharing
configuration. These configurations are connected in series. Reliability metrics are
already calculated for each template, allowing us to add them to determine the system
failure rate. For example:

Asys = (Aswa + Anwa) + Asws + Anws) + (Aswe + Anwe) (34)
Other metrics can be calculated similarly. For the availability of the entire system,
we can use the sum of the unavailability of each configuration and subtract it from 1:
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Table 8: FUSION Output Metrics Calculation Formulas for Configuration A-C-A

Formulas
Metric
Hardware Software System
Failure Rate )\hwa” = 2)\hwa + >\hwb Asu;a” = 2)\su;a + >\swl, Asysa” = ZAsysa + )\sysb
MTTF — ! !
Ahwgy Asway Asysa
Reliability e Mwant t =1 e Mswant t =1 e Mvsant t =1
MTT Fy., MTT Fay, MTTF.
Ahwa” Aswa” Asys
a Mhws | Anw Mowy | Asw Mwgy | Aew,
MTTR ( Hhwq + thz )/)\hU)“” ( Hswq + stz )/)\SU}‘I” (/»Lhwax staii )/)\Sysa”
Availability | 2 — 2A4p, — Ahw, 2—2A4,,, — Asw, 2= PAge., = Ay
* Must be adjusted for the year
& u is the repair rate and is measured in repairs per unit time
Table 9: FUSION Outputs for Configuration A-C-A
Metric Hardware Software System (SW 4+ HW)
Failure rate 0.60 2.40 3.00
MTTF 1.6667 0.4167 0.3333
Reliability 0.54.9% 9.1% 5.0%
MTBF 1.6670 0.4168 0.3335
MTTR 240 120 144
Availability 99.979% 99.959% 99.938%
A=1-> (1-4) (35)

Table 8 provides the formulas for the reliability and availability metrics. Table 9
shows the outputs for the sample configurations. FUSION will automatically calculate
for any combinations of the templates.

4.4 Possible other configuration options for future addition

We have selected three basic practical configurations for the Phase I implementation.
However, many other configurations are appropriate for some users. We will provide
a sample list of cases for future implementation.

® A two-unit active-active load-sharing system where:

— When one unit fails, the remaining unit takes over the entire load, and the system
continues to function until the second unit fails.
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— Extend from two units to multiple units.

® A two-unit parallel system.
® A two-unit active-standby system where:

— The standby unit is powered up and ready, providing near-instantaneous response
time. It is called a hot standby unit.
— Include an imperfect switching case.

® Include an impact of interaction between software and hardware.

5 Conclusion

In this chapter, we introduced FUSION, an innovative cloud-based tool designed to
integrate software and hardware models for analyzing defects and failures, providing
a unified approach to system reliability. FUSION effectively addresses a critical gap
in reliability modeling for the operational phase of software by aligning software relia-
bility models with established hardware reliability models. Our research demonstrates
that software failure rates during operation can be accurately modeled as segmented
straight lines. Equipped with advanced analytics and a graphical editor, FUSION facil-
itates the creation of detailed reliability block diagrams, thereby expediting system
reliability assessments and enabling targeted improvements. By allowing practitioners
to enhance overall system performance and reliability, FUSION significantly improves
customer satisfaction. This comprehensive tool represents a considerable advancement
in the field of reliability engineering, paving the way for more robust and reliable
integrated systems.

Acknowledgements. This research is supported by the National Science Foun-
dation (NSF) Small Business Technology Transfer (STTR) program under Award
Number 2348264.

Appendix A A Summary of Software Reliability
Models

Many software reliability models based on the non-homogeneous Poisson processes
(NHPP) [21-43] have been developed using the fault intensity rate function and the
mean value functions within a controlled testing environment to estimate reliability
metrics, including the number of residual faults, failure rate, and software reliability.
Generally, these models are applied to software testing data and used to make predic-
tions about software failures and reliability in the field under the assumption that the
field environment and the software development environment are the same. In other
words, the common underlying assumption of such models is that the operating and
development environments are similar. However, operating environments in software
are often quite different [9, 44]. The randomness of the operating environments [9, 45]
affects the entire system’s failure, particularly software failure.

Estimating software reliability in the field is essential yet challenging. Usually,
software reliability models are applied to system test data to estimate the software’s
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Table Al: A summary of SRGMs for non-random operating environments [2, 21]

| Model | m(t)
Goel-Okumoto (G-O) a(l — e~b%)
Delayed S-shaped a(l — (14 bt)e )

—b
Inflection S-shaped 'ﬁ_ﬁi;;t)
Yamada Imperfect debugging 1 aa—_&(eat — @)

Yamada Imperfect debugging 2

Pham Inflexion

PNZ model

Pham-Zhang model

Dependent-parameter model
Dependent-parameter model with m(t) # 0
Pham-Zhang IFD

Zhang-Teng-Pham model

PZ-coverage

Dependent failure

a(l—e ?)(1— %)+ aat
1
¥~ oy
T (- e (1 - $) + at)
i (e - et — g (et o))
a(l+yt)(yt —1+e™ )
mo 7%2111 e~ 7(E=t0) 4 o (1 4 ) (7t — 1 + (1 — vtg)e~7(t=t0))
a — ae P (1 + (b + d)t + bdt?)

Y (14a)e=bt £ (—8)
p—B 1- ( a+ae—bt )

14bt 14bt) 1
a(l+at — %) - a‘ble(btt»l) X (ln(bt +1)+ Zzoio WW)
a
1+%(Cfg§t “

failure rate in user environments [9]. Zhang and Pham [9] demonstrated a practical
methodology to predict the field failure rate of software by analyzing system test data
and field data of earlier releases using software reliability growth models (SRGMs).
Teng and Pham [44] discussed a generalized model that captures the uncertainty of the
environment and its effects on the software failure rate. Other researchers [45-50] have
developed software reliability models that consider the uncertainty of the operating
environment. Tables Al and A2 summarize some standard NHPP software reliability
models of the mean value function that can determine the expected number of residual
faults after the testing phase for non-random and random operating environments,
respectively.

Appendix B Linear Defect Prediction Model
(LPM)

B.1 PART I: Finding inflection points and multiple curves

Input data
® (x;,9;) V0 < i < p is the cumulative number of defects found
[ )

(x0,y0) and (x,,yp) represent the start and end weeks of the entire defect data,
respectively.

1 is an index for the current week up to the end week

7 is an index for the week up to the current week ¢
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Table A2: A summary of SRGMs for random operating
environments [21]

| Model | m(t) \
Pham (Vtub) model N (1= (5:5=0)")
B+dP—1 o
Logistic fault detection model | N <1 = —bt_>
o (8) m ()
Logl tainty model N(1-—2
oglog uncertainty mode ( 5+at”71)
. _ 1
Pham Inflexion N <1 (ET"”)%_
1+5
Testing coverage uncertainty N(1- £+c)e—bf>
- In (W)
[e3
SRGM dependent failures N|1-— (M-Tli!(b%l))

In line 9, we calculate the sum of squares of the difference between the predicted
value and actual value. In line 11, we have a decision to identify an inflection point
by comparing the last two weeks of SSQ values. In line 13, Check the relative changes
of S5Q; and SSQ;_1 to SSQ;_o values, respectively . In Line 14 If both are greater
than an accuracy threshold, default = 10%, then an inflection point is found at the
week 7 — 2. And continue the ¢ loop with x; = x;_o for the next inflection point

A set of multiple curves with start and end weeks and slope for each curve. Refer
to a sample output in Table B3.

Table B3: A sample output of LPM Part I
‘ Curve No. ‘ Start ‘ End ‘ Slope ‘

4/15/2019 | 5/6/2019 3.33
5/6/2019 | 5/27/2019 | 2.33
5/27/2019 | 6/17/2019 | 7.00
6/17/2019 | 7/8/2019 5.00
7/8/2019 | 7/29/2019 | 8.33
7/29/2019 | 9/2/2019 5.80
9/2/2019 | 9/23/2019 | 5.33
9/23/2019 | 11/25/2019 | 2.00

0 O Ut W

B.2 PART II: Adjusting the multiple curves based on the
relative change in the slope

Algorithm 2 generates a final set of inflection points and slopes using the output of the
LPM Part I. Its input is a set of multiple curves with start and end weeks and slope
for each curve. Refer to a sample output in Table B4. Figures B1 and B2 demonstrate
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Algorithm 1 Finding inflection points and multiple curves

1: procedure LPM((x;,y;) V0 <i<p)

2 fori=x,,i <zp,i++ do > Start the loop at x4, ys to the end week
3 if i > x5+ 3 then

4 slope = 4=2=

5: for j=1,,j <i,j++ do

6 y; = slope x (z; — xs) + Ys > Calculate the predicted value
7 SSQ; = (y; — 4;)* > This is a measure of goodness of fit
8 end for

9: SS5Q; = z;:x (ffgj) > Goodness of fit for the week x4 to week i
10: if i > 2,4+ 5 then > Check if we have the last two weeks of SSQ values
11: ASSQy = 3592 550

12: ASSQ, = 55925501

13: if i > x,+ 5 then

14: if (ASSQy > 0.1) AND (ASSQ3 > 0.1) then

15: IP = Week i — 2 > IP is the Inflection Point
16: else

17: Ts = Tj—2

18: end if

19: end if

20: end if

21: end if

22: end for

23: return IP

24: end procedure

the predicted cumulative defects and weekly defects, respectively, using the LPM Part
I and IT with actual data.

Appendix C Algorithm for Software Failure
Prediction

C.1 Input Data

Fig. C3 shows the required input data. It includes customer defect predicted curve
(i.e., output of LPM) and the software failure data (i.e., critical defects).

C.2 Analytics for software failure prediction

C.2.1 Transformation function

e The cumulative predicted defect curve (z,y) is transformed into the cumulative
failure curve (u,v) using the parameters, «, 8, and ~:

u=a+ Bz (C1)

22



Table B4: A sample table illustrating the LPM Part II procedure

Curve  Start End Slope  Rel. Change Action SSQ Rel. Change
1 15/04/2019 06/05/2019  3.33
2 06/05/2019 27/05/2019 2.33 0.30
3 27/05/2019  17/06/2019  7.00 2.00
4 17/06/2019 08/07/2019  5.00 0.29 NA
5 08/07/2019 29/07/2019  8.33 0.67
6 29/07/2019  02/09/2019 5.80 0.30
7 02/09/2019  23/09/2019  5.33 0.08 merge
8.00 23/09/2019 25/11/2019 2.00 0.62
1 15/04/2019 06/05/2019  3.33
2 06/05/2019  27/05/2019 2.33 0.30
3 27/05/2019  17/06/2019  7.00 2.00
4 17/06/2019 08/07/2019  5.00 0.29 merge 0.03
5 08/07/2019  29/07/2019  8.33 0.67
6 29/07/2019 23/09/2019 5.63 0.33
7.00 23/09/2019  25/11/2019  2.00 0.64
1 15/04/2019 06/05/2019 3.33
2 06/05/2019  27/05/2019  2.33 0.30 merge
3 27/05/2019 08/07/2019 6.00 1.57 0.26
4 08/07/2019  29/07/2019  8.33 0.39 ’
5 29/07/2019 23/09/2019 5.63 0.33
6.00 23/09/2019  25/11/2019  2.00 0.64
1 15/04/2019 27/05/2019 2.83
2 27/05/2019  08/07/2019  6.00 1.12
3 08/07/2019 29/07/2019 8.33 0.39 0.003
4 29/07/2019  23/09/2019 5.63 0.33 merge
5.00 23/09/2019 25/11/2019 2.00 0.64
1 15/04/2019  27/05/2019 2.83
2 27/05/2019 08/07/2019 6.00 1.12 0.62
3 08/07/2019  23/09/2019 6.36 0.06 merge ’
4.00 23/09/2019 25/11/2019 2.00 0.69
1 15/04/2019 27/05/2019 2.83
2 27/05/2019 23/09/2019 6.23 1.20
3.00 23/09/2019  25/11/2019  2.00 0.68 merge
1 15/04/2019 27/05/2019 2.83
2.00 27/05/2019  25/11/2019  4.77 0.68 merge
v="y (C2)

® Parameter interpretations

— «: Horizontal shift (right if positive, left if negative, no shift if zero).
— [3: Scaling factor (delay if greater than 1, acceleration if less than 1, no change if

)

— v: Vertical scaling factor (doubles height if 2, reduces to 50% if 0.5, no change if
1).

® A non-linear optimization problem is solved to find the best values of o, 8, and v
that minimize the difference between the actual and transformed failure curves.
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Algorithm 2 Adjusting the multiple curves based on the relative change in the slope

1: Create a table of start & end dates and slope for each segmented line of the original
curve (i.e., the output of the LPM Part I).

2: Calculate SSQ, which is the square root of the sum of the squares of the distance
between the actual value and the predicted curve.

3: Calculate the relative change in the slope value from one segment to the next.

4: Identify the smallest relative change that will be merged.

5. Merge the two segments identified: (1) The start date is replaced with the previous

one. (2) Calculate the slope for the new segment based on the new start & end

dates.

Create a new table with the merged segment. See Table 2.

Calculate SSQ for the new curve.

Calculate the relative change in SSQ from the previous curve.

Repeat steps 2 through 7 until the relative change in SSQ is greater than 1 (a new

parameter).

10: The final predicted curve is the previous curve.

11: The expected output for troubleshooting is a set of tables with each iteration and
the original and final predicted curve, as shown in the sample tab.

© 3

Project X Release A: Weekly Customer Defect Prediction
Project X Release A: Customer Defect Prediction

Weekly Defects

7/4/2019

——actual  —— Original Curve =t

Fig. B1: Predicted cumulative curvespio B
generated by LPM Part I and II with_, '
actual data.

Predicted weekly curves gener-
ated by LPM Part I and II with actual
data.

C.2.2 Algorithm

The algorithm optimizes the parameters «, 3, and « to best fit the predicted failure
curve to the actual one. The objective function is based on the absolute difference
between predicted defects and actual failures over the last 10 (default) weeks.

Objective function

To calculate the objective function, follow these steps:

e Calculate transformed values (u,v) using the equations (C1) and (C2) for given
values of «, 3, and ~.
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Table C5: Sample calculation of the objective function b.2 Setting parameter
rages

Customer Failure curve
Week  Predicted curve | Week  Predicted Week Interpolated Actual  Absolute

X y u v x_act v_act y-act difference
1 2 5.35 0.18 1

2 5 6.20 0.42 2

3 7 7.05 0.66 3

4 10 7.90 0.90 4 0.00 1 1.00
5 12 8.75 1.14 5 0.00 1 1.00
6 15 9.60 1.38 6 0.37 1 0.63
7 21 10.45 1.94 7 0.65 1 0.35
8 27 11.30 2.50 8 0.93 1 0.07
9 33 12.15 3.07 9 1.21 2 0.79
10 39 13.00 3.63 10 1.64 2 0.36
11 46 13.85 4.19 11 2.31 2 0.31
12 52 14.70 4.75 12 2.97 3 0.03
13 58 15.55 5.32 13 3.63 3 0.63
14 64 16.40 5.88 14 4.29 5) 0.71
15 70 17.25 6.44 15 4.95 5 0.05
16 76 18.10 7.00 16 5.61 6 0.39
17 82 18.95 7.56 17 6.27 6 0.27
18 88 19.80 8.13 18 6.94 6 0.94
19 94 20.65 8.69 19 7.60 7 0.60
20 101 21.50 9.25 20 8.26 8 0.26

® The actual failure curve (Zqet, Yact) remains on the original (x,y) scale. Calculate
Vget, fOr u = x4¢¢ using interpolation:

Vg —
Vact = V1 + ! X (xact - ul) (Cg)
U2 — U1

e Calculate the sum of the absolute differences (SSQ) between vget, and yget:

SSQ = Z |Uact - yact| (C4)
Note: Table C5 demonstrates a sample calculation of the objective function with

sample parameters a = 4.5, § = 0.85, and v = 0.092. The parameter ranges are as
follows:

® «o: 5 to 0 with a decrement of 0.5
® 3: 0.7 to 1.1 with an increment of 0.05

® ~:0.86 to 1.2 with an increment of 0.

Solving the non-linear optimization problem

® The algorithm iterates over three levels:

— Level 1: Iterate over v from 0.86 to 1.2 with an increment of 0.02.

25



Project X Release A: Customer Defects vs. Failures Project X Release A: Customer Defects vs. Failures
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and software failures ware failure curve

— Level 2: For each value of 7, iterate over 8 from 0.7 to 1.1 with an increment of
0.05.

— Level 3: For each combination of v and f, iterate over a from 5 to 0 with a
decrement of 0.5.

® (Calculate SSQ for each combination and track the minimum SSQ value:

— For a fixed value of ~, iterate through o and 3. Terminate Level 3 if the SSQ
exceeds the previous value.

— Continue Level 2 until the minimum SSQ for the current + is found.

— Repeat the process for v until the global minimum SSQ is identified.

This algorithm provides a methodical approach to determining the best-fit param-
eters that minimize discrepancies between the predicted and actual software failure
curves (see Figure C4).
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