
Abstract – In a world where AI and automation are 
prevalent, ensuring software and hardware reliability is 
crucial. While defect modeling during the coding and 
testing phases is well-studied, there remains a gap for 
both theoretic and/or practical models for the 
operational phase. This phase, starting post-
deployment (when software is in use by customers), is 
critical as defects can cause customer-impacting 
system downtime. This paper integrates approaches 
from software and hardware reliability modelling to 
propose methods for predicting operational phase 
defects and failures. For this phase, we propose to 
approximate the software failure rate as a constant and 
develop a digital tool for system reliability modeling, that 
correlate software reliability with hardware profiles for 
comprehensive assessments. While software and 
hardware reliability modelling have both been 
separately well-studied, this paper is a ground-breaking 
attempt to combine them in the context of a deployed 
software solution. 

Index Terms – Customer defects, software failures, 
operational software reliability, piecewise modelling, 
digital engineering 

I. Introduction

As the world becomes more AI-powered, automated, 
and robotic, software and hardware reliability is crucial. 
Usually, such reliability depends on processes that use 
predictive models to detect defects in software or 
hardware. Software defects, also called faults or bugs, 
are mistakes or glitches in a computer program or 
system, causing wrong or unexpected results, which 
affect software reliability greatly. 

While extensive research has focused on modeling and 
analyzing defects during the coding and testing phases 
of software development, a notable gap exists in 
practical models dedicated to the operational phase. 
This operational phase commences upon software 
deployment at customer sites, where defects hold the 
highest criticality due to their potential to cause system 
downtime. This contrasts sharply with the well-studied 

operational phase of hardware reliability. Hence, 
integrating software and hardware reliability, despite 
their distinct modeling approaches, is imperative given 
their interconnected impact on system failures. 
Furthermore, the necessity for combined reliability 
evaluation solutions is underscored by the need to 
facilitate architectural comparisons during the pre-
construction design phases. 

A software release comprises newly developed features 
or functionalities, which undergo a lifecycle 
development process involving requirements 
specification, software design, coding, and testing 
against predefined criteria. This software lifecycle is 
depicted in Figure 1. Once the testing phase concludes, 
the software undergoes acceptance testing at customer 
sites before being deployed for commercial operation. 
During this process, software defects are identified by 
both internal testers and customers. Software quality 
improves iteratively through a find-fix process, 
encompassing internal and customer tests and 
operations. This often leads to the development team 
addressing fixes for both internal test defects and 
customer-reported defects post-initial delivery to the 
customer site. However, defects continue to surface 
during the operational phase after commercial 
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Figure 1. A sample software life cycle with defect     
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deployment, some of which may result in system 
outages or failures in the field. Understanding the 
distinction between defects and failures forms a crucial 
foundation for the proposed project. We assume critical 
severity defects to represent software failures based on 
the severity classification of software defects. 

In practice, two main scenarios arise: A) Software 
development is conducted in-house, and B) Software 
development is outsourced to a subcontractor, where 
system testing is performed internally before delivering 
the final software product for commercial use. In Case 
A, customer defect data from system tests and 
operations are provided by the customer. In Case B, 
such data are available in-house, though defect data 
during development and testing stages may only be 
accessible if provided by the subcontractor. For 
example, in the telecommunication industry, equipment 
suppliers such as Nokia and Ericsson handle software 
development, while service providers like AT&T, Verizon, 
and T-Mobile perform system tests and deploy the 
software product in a nationwide network to provide 
wireless services to end-users like cell phones and 
personal computers. The work in this paper will be 
particularly beneficial to service providers. 

Most software reliability growth models that exist today 
[1] – [7] mainly address Case A, where they use defects 
discovered during the testing phase to generate defect 
prediction curves like exponential or S-shaped. 
However, a new cloud-based tool [9] – [15] has been 
recently created, using SaaS technologies [8], that 
incorporates defect close and open curves. A new 
modeling approach has also been proposed, that 
combines a series of piecewise exponential models and 
automated prediction algorithms. There is not much 
research on Case B [16] – [17]. This paper concentrates 
on Case B and outlines a plan for developing a digital 
tool for assessing software and hardware system 
reliability [18] – [19]. 

Figure 2 illustrates typical defect trends, including 
release level (in blue), internal (in yellow), and customer 
defects (in red). The internal defects are typically found 
during the formal test phase. The internal defect curve 
generally slows down after the last delivery date (D2), 
and the customer defect curve starts at the first delivery 
date (D1). We also show a defect prediction curve (in 
dashed black) generated at the last delivery date with 
our online tool, STAR [14] – [15]. The prediction curve is 
generally higher than the actual defect curve because 
the prediction curve assumes the intensity of the internal 
test continues. The gap between these curves 

represents defects not found in this release and will be 
carried over to the next release. Also shown in Figure 2 
is the customer defect curve, which is the difference 
between the release-level and internal defect curves.  

In this paper, we focus on customer defects and failures, 
as highlighted in the yellow boxes in Figure 1. A software 
failure denotes a system outage caused by a software 
defect during an operation period. Software reliability 
denotes the probability of the system operating without 
a software failure during a specified period, typically 
measured in failures per year. Software availability 
represents the likelihood of the software system being 
operational. Both software reliability and availability 
metrics are defined for an operation period. Despite 
frequent references to software reliability in literature, 
this field requires more attention. There is often an 
assumption that software defects equate to software 
failures, and the software defect curve during the 
operation phase will follow the extension of the defect 
prediction curve.  

The rest of this paper is organized as follows: Sections 
II and III will present innovative approaches for 
automatically predicting customer defects and failures 
during the operational phase. A key aspect of our paper 
will be to estimate the software failure rate as constant 
throughout the operation period, which forms a 
foundational element of our research. Detailed technical 
discussions regarding these methodologies will be 
provided in these sections. Additionally, in Section VI, 
we will utilize multiple real-world datasets to illustrate 
how defects and failures can be accurately represented 
as piecewise straight-line curves. 

Figure 2. Cumulative view of internal and customer  
injection and find-fix processes defect curves with a 
predicted curve at delivery (D2) 

 



 Section V will describe a plan for creating a digital tool 
for self-service system (software and hardware) 
reliability modeling. Our main goal is to develop a 
comprehensive system (software and hardware) 
reliability model, that includes algorithmic analytics 
automation and the creation of a digital engineering tool 
for holistic system-level reliability evaluations. First 
steps involve linking common software reliability growth 
models with the hardware bathtub profile. Highlighting 
the constant defect growth rate during the customer 
operational phase matches the flat phase seen in 
hardware curves. By using the software failure rate 
based on failure intensity from observed failures during 
customer software operation, we aim to achieve this link 
effectively. Next, integrated software and hardware 
models will be suggested, treating software similar to 
hardware. This approach will determine system 
reliability through reliability block diagrams (RBDs), 
providing metrics such as operational software reliability 
and availability. 

 

II. Prediction Model for Software Defects During 
the Operational Phase 

Different stages of software usage in the operational 
phase have different rates of finding defects: early 
customer testing, customer testing, post-deployment, 
and customer migration to newer releases. To handle 
this variation, we want to create a defect trend model 
that covers the whole operational phase. This model will 
be shown as a series of straight lines based on empirical 
data. Figure 3 shows this idea with sequential lines. For 
more detail, Figure 4 gives a weekly report of the trend. 

Our initial studies in this direction suggest a segmented 
linear equation is expressed in a mathematical form as: 

m(x) = m(𝑥𝑥𝑗𝑗−1) + 𝜃𝜃𝑗𝑗  (𝑥𝑥 −  𝑥𝑥𝑗𝑗−1) 
 for  𝑥𝑥𝑗𝑗−1 ≤ x ≤ 𝑥𝑥𝑗𝑗  (1) 

where m(x) represents the cumulative defects at time x, 
and 𝑥𝑥𝑗𝑗 represents the j-th breakpoint. The parameter 𝜃𝜃𝑗𝑗 
is the slope of the j-th straight line, representing the 
defect rate. 

The main technical challenge in reaching our goal is to 
develop an algorithm that can automatically detect 
transition points (or change points) between each 
straight line, and adjust to the different patterns in the 
data. It's important that this algorithm works smoothly in 
real-time, and considers new defect data as it comes in. 
This will result in a segmented linear representation of 
software defects during the operational phase. This 
algorithm can also be applied to hardware failure data, 
not just software. Moreover, we will compare the actual 
hardware failure rate with the rate estimated from the bill 
of materials (BOM) to provide comprehensive insights. 

We have developed a novel method for automatically 
detecting transition points where the slope of the 
straight line changes significantly. First, we find these 
transition points or time intervals where the defect trend 
shows a noticeable shift, as shown in Figure 3. 
Employing a straightforward straight-line model, we 
continuously track the slope and detect significant 
changes in the relative change of consecutive slope 
values. An inflection point is established when this 
relative change surpasses a predetermined threshold. 

 
Figure 3. Cumulative view of customer defects Figure 4. Weekly view of customer defects with 

prediction 
 



Upon locating the transition point, we adjust the start 
date to correspond to this point and repeat these steps 
until reaching the end of the defect data. This iterative 
process yields the final predicted curve, depicted in 
Figure 3, comprising a series of piecewise straight-line 
models, as detailed in equation (1). 

Our algorithm seamlessly provides numerical solutions 
in real time as new defect data emerges. By 
amalgamating best-fitted straight lines for individual 
time segments between transition points, we construct 
a piecewise straight line. Utilizing the Project X Release 
A data, we illustrate the resulting defect prediction curve 
in Figure 3, aligning with the expected outcomes 
outlined previously. Further examination of the 
algorithm's robustness will be expounded upon in 
Section 4. Additionally, a weekly perspective of actual 
defects alongside the predicted curve is presented in 
Figure 4.  

 

III. Prediction model for software failure rates 

The occurrence of software failures typically remains 
relatively infrequent compared to customer defects, 
posing a statistical challenge in data analysis. To 
overcome this hurdle, we propose the implementation 
of a transformation function aimed at converting the 
customer defect curve into a corresponding software 
failure curve. Both curves are visually represented in 
Figure 5. Initial investigations indicate that the quantile-
quantile (Q-Q) plot technique holds promise in 
facilitating this transformation process. The rationale 
behind the Q-Q plot technique is demonstrated through 
a graphical representation of cumulative failures plotted 
against cumulative customer defects, as illustrated in 
Figure 6. This graphical representation unveils a linear 

alignment, suggesting a significant correlation between 
the curves. 

This involves transforming the original time variable x 
into a new time scale u. To achieve this, we must 
determine an appropriate transformation function f that 
preserves the segmented linear configuration. The 
resulting software failure curve will thus be represented 
as follows: 

    n(u) = n(𝑢𝑢𝑗𝑗−1) + 𝜆𝜆𝑗𝑗  (u − 𝑢𝑢𝑗𝑗−1) for 𝑢𝑢𝑗𝑗−1 ≤ u ≤ 𝑢𝑢𝑗𝑗    (3) 

The software failure rate can be obtained from the value 
of 𝜆𝜆𝑗𝑗 right after the software deployment date. 

The failure rate curve n(u) can then be derived from the 
defect curve m (x) via a transformation function f as:  

 n(u) = f (m(x))   (4) 

It's crucial to acknowledge that conventional statistical 
techniques like correlation coefficients are impractical 
due to the dynamic nature of defect and failure data. 
This dynamism presents a technical obstacle in data 
management. Our proposed approach entails horizontal 
and vertical shifts to align the customer defect curve 
with the software failure curve. We aim to develop an 
algorithm capable of numerically solving a non-linear 
optimization problem, thereby pinpointing the optimal-fit 
software failure curve using the customer defect curve 
as a guiding metric. This algorithm will automatically 
generate the software failure curve, depicted as a series 
of interconnected straight lines in a piecewise manner.  

The statistical transformation function comprises two 
components: horizontal and vertical shifts. Put 

 
Figure 5. Cumulative view of customer defect 

 
Figure 6. A plot of cumulative failure data vs. and 
software failure curves cumulative customer defect 
data 

 



differently, the initial curve, denoted as the prediction 
curve in dashed black, undergoes a transformation 
involving horizontal and vertical shifts to closely align 
with the actual failure curve. The transformation function, 
mapping (x, m(x)) coordinates to (u, n(u)), is detailed in 
equations (5) and (6) for horizontal and vertical shifts, 
respectively. 
 

u = α + β x   (5) 
n(u) = γ m(x)   (6) 

 
The parameter α signifies a fixed delay in weeks from 
the defect curve to the failure curve, while β represents 
an additional delay in the defect curve. The parameter γ 
is determined as the ratio of defects to failures, 
indicating defects per failure. That is, this ratio 
represents the portion of defects resulting in a failure.  
 
This problem entails non-linear optimization with three 
variables (or parameters) and aims to minimize the total 
distance between the predicted defect curve and the 
actual failure curve. Solving this problem involves 
iterative numerical analysis with three-level loops and 
multiple iterations for each level. Initial values, 
increments, and maximum iteration counts must be 

defined for each level. For a detailed explanation of this 
numerical analysis, please refer to [14]. 
 
Figure 7(a) depicts the final predicted failure curve 
(shown as dashed red), which should closely align with 
the actual failure curve (depicted in blue). To validate the 
predicted failure curve, actual failure data can be 
overlaid, as demonstrated in Figure 7(a). The figure also 
displays the defect rate and failure rate as 6.11 
defects/week and 0.56 failures/week, respectively, 
corresponding to the slopes of the two predicted curves 
at deployment (D2). The ratio of defects to failures, 
calculated as 0.092, represents the value of γ, indicating 
that only 9.2% of defects will cause a software failure. 
 
In practice, the number of failures is typically limited, 
posing challenges for the application of statistical 
methods. The transformation function method outlined 
in this section effectively addresses this challenge. In 
the subsequent section, we will utilize Project X Release 
B data to exemplify the application of the transformation 
method for a limited dataset. 
 

IV. Application of the prediction methods to 
other project data 

 

Figure 7. Prediction results of software customer defects and failures for four project data 

 

(a) (b) 

(c) (d) 



To assess the effectiveness of the proposed models, we 
will utilize four distinct real-world defect datasets 
obtained from significant software development projects 
within the telecommunications sector. These datasets 
comprise customer defects identified during both 
internal and operational phases, categorized based on 
severity levels. 

In practice, there are primarily two scenarios: A) 
Software development conducted in-house, where the 
software product is delivered directly to a service 
provider and B) Software development outsourced to a 
subcontractor, with a service provider conducting the 
system test internally. In Case A, customer defect data 
from system tests and operations are provided by the 
service provider. In Case B, while customer defect data 
are available internally, defect data during the 
development and test stages are only accessible if 
provided by the subcontractor. 

A. In-house software development perspective 

We have two consecutive releases, A and B, for each of 
the two projects, X and Y, at our disposal to validate the 
prediction models outlined in Sections II and III. Both 
projects constitute integral elements of a 
telecommunications network system known as a base 
transceiver station (BTS), which facilitates wireless 
communication between user equipment (e.g., a cell 
phone) and a network. Project X involves a highly 
demanded large-scale software development for 5G, 
while Project Y encompasses a stable mid-size software 
development for 4G. Figure 7 provides an overview of 
customer defects and failures, along with predictions. 

In both Projects X and Y, Release A boasts a significant 
number of defects, making it suitable for prediction 
methods. However, Release B lacks sufficient failure 
data for both projects. To address this, we utilized the 
values of α, β, and γ of the transformation function 
obtained from Release A to predict failures for Release 
B in both projects. This approach is deemed reasonable 
for both cases. We have demonstrated that both the 
defect rate and the failure rate remain constant after 
deployment. Moreover, we can reasonably employ the 
transformation function from the previous release to 
predict the failure rate if the failure data is insufficient. 

B. Software development by a subcontractor 

In this scenario, we (acting as the customer) 
subcontract the software development, conduct the 
system test, and provide the service to the end-user 
upon readiness. We possess defect data from both the 

system test and the operation phases. The dataset 
below depicts defects identified during the system test 
after several deliveries of a software product by a 
subcontractor. Unfortunately, detailed information 
regarding the project's background is limited.  

Figure 8 showcases the cumulative defects detected 
during the system test. Over the course of the period, 
the subcontractor made four deliveries. Notably, the 
initial delivery (Delivery #1) appears to encompass a 
relatively small portion of the total features, followed by 
a maintenance load (Delivery #2) featuring bug fixes. 
Subsequently, a third delivery (Delivery #3) introduced 
most of the remaining features, succeeded by another 
maintenance load (Delivery #4) with bug fixes. We have 
observed a similar result from our NASA data. It is 
evident that the final maintenance load potentially 
contained defects while maintaining the system's 
stability. Once again, we have illustrated that customer 
defects can be elucidated using piece-wise straight lines. 

Figure 8. Customer test defects with multiple 
deliveries by a software development subcontractor 

 



V. Self-service system for system reliability 
engineering 

This section outlines a plan for deploying a self-service 
system dedicated to system reliability engineering 
encompassing both software and hardware aspects. As 
the project is currently underway, we will provide a high-
level overview of our digital tool. 

A. Models for Integrated Software and Hardware 
Failure 

The proposed system will utilize the algorithms and 
models developed in Sections II and III and use 
statistical methods to correlate the failure model 
developed above with the flat phase of the bathtub 
hardware curve to create a combined software and 
hardware failure model. 

B. System Reliability Modeling Digital Tool 

The research endeavors to design and develop a digital 
application aimed at facilitating the interactive creation 
of system reliability block diagrams (RBDs), integrating 
both software and hardware components. The system 
will offer users several preconfigured RBD templates to 
select from, including a single-unit system, a two-unit 
standby system, and a two-unit active-active system, as 
depicted in Figure 9. 

Users will have the capability to extract hardware failure 
data from a widely utilized failure rate database, 
leveraging Bills of Material (BOM). Furthermore, the tool 
will integrate formulas for each RBD template to 
compute crucial system reliability metrics such as Mean 
Time Between Failures (MTBF) and availability.  

Additionally, the application will empower users to 
merge these templates, enabling the creation of a 
comprehensive representation of the entire system. 
Users will be able to visualize software failure rate 
predictions alongside the RBDs, facilitating a more 
thorough comprehension of the system's overall 
reliability.  

Figure 11: Potential User Journey While Using the 
Reliability Block Diagram Configurations 

Figure 10 illustrates the graphical editor combining two 
single-unit configurations and one two-unit active-active 
configuration, while Figure 11 showcases a potential 
user interface journey elucidating how the reliability 
block diagram configurations may be implemented. In 
this illustration, the initial screen depicts a user selecting 
one of the available configurations and proceeding by 
clicking the next arrow. Subsequently, the user is 
directed to a screen where certain inputs can be 
configured, and upon completion, the system generates 
output metrics associated with the configuration and 
inputs. The final screen demonstrates the possibility of 
selecting multiple RBD templates and specifying the 
order in which the selected templates should be 
arranged. It's important to note that this is merely a 
mockup, and the actual designs and implementation are 
expected to occur during the implementation phase. 

 

VI. Conclusion 

In this paper, we have demonstrated that customer 
defects and software failures during the operational 
phase can be effectively modeled using a piecewise 
straight-line approach. We have presented novel 
algorithms to automate the prediction process, and their 
reliability has been verified by analyzing several real-
world project datasets. This finding, implying a constant 
rate of operational software reliability, opens the 

Figure 9: System Reliability Block Diagram. Sample graphical editor 
for a single-unit system (software + hardware)  
 

 
Figure 10: Reliability Block Diagram. Sample graphical editor for 
system reliability block diagram. A combination of two single-unit 
configura6ons and one two-unit active-active configuration. 
 

 



possibility of developing a digital tool for self-service 
system reliability modeling, covering both software and 
hardware components. We have described our initial 
design plan for the online tool, laying the foundation for 
further development and implementation. 
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