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Abstract — In a world where Al and automation are
prevalent, ensuring software and hardware reliability is
crucial. While defect modeling during the coding and
testing phases is well-studied, there remains a gap for
both theoretic and/or practical models for the
operational phase. This phase, starting post-
deployment (when software is in use by customers), is
critical as defects can cause customer-impacting
system downtime. This paper integrates approaches
from software and hardware reliability modelling to
propose methods for predicting operational phase
defects and failures. For this phase, we propose to
approximate the software failure rate as a constant and
develop a digital tool for system reliability modeling, that
correlate software reliability with hardware profiles for
comprehensive assessments. While software and
hardware reliability modelling have both been
separately well-studied, this paper is a ground-breaking
attempt to combine them in the context of a deployed
software solution.

Index Terms — Customer defects, software failures,
operational software reliability, piecewise modelling,
digital engineering

l. Introduction

As the world becomes more Al-powered, automated,
and robotic, software and hardware reliability is crucial.
Usually, such reliability depends on processes that use
predictive models to detect defects in software or
hardware. Software defects, also called faults or bugs,
are mistakes or glitches in a computer program or
system, causing wrong or unexpected results, which
affect software reliability greatly.

While extensive research has focused on modeling and
analyzing defects during the coding and testing phases
of software development, a notable gap exists in
practical models dedicated to the operational phase.
This operational phase commences upon software
deployment at customer sites, where defects hold the
highest criticality due to their potential to cause system
downtime. This contrasts sharply with the well-studied

operational phase of hardware reliability. Hence,
integrating software and hardware reliability, despite
their distinct modeling approaches, is imperative given
their interconnected impact on system failures.
Furthermore, the necessity for combined reliability
evaluation solutions is underscored by the need to
facilitate architectural comparisons during the pre-
construction design phases.

A software release comprises newly developed features
or functionalities, which undergo a lifecycle
development process involving requirements
specification, software design, coding, and testing
against predefined criteria. This software lifecycle is
depicted in Figure 1. Once the testing phase concludes,
the software undergoes acceptance testing at customer
sites before being deployed for commercial operation.
During this process, software defects are identified by
both internal testers and customers. Software quality
improves iteratively through a find-fix process,
encompassing internal and customer tests and
operations. This often leads to the development team
addressing fixes for both internal test defects and
customer-reported defects post-initial delivery to the
customer site. However, defects continue to surface
during the operational phase after commercial
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Figure 1. A sample software life cycle with defect

2024 International Society of Science and Applied Technologies (ISSAT) on Reliability & Quality in Design (RQD)


mailto:kokumoto75@gmail.com

deployment, some of which may result in system
outages or failures in the field. Understanding the
distinction between defects and failures forms a crucial
foundation for the proposed project. We assume critical
severity defects to represent software failures based on
the severity classification of software defects.

In practice, two main scenarios arise: A) Software
development is conducted in-house, and B) Software
development is outsourced to a subcontractor, where
system testing is performed internally before delivering
the final software product for commercial use. In Case
A, customer defect data from system tests and
operations are provided by the customer. In Case B,
such data are available in-house, though defect data
during development and testing stages may only be
accessible if provided by the subcontractor. For
example, in the telecommunication industry, equipment
suppliers such as Nokia and Ericsson handle software
development, while service providers like AT&T, Verizon,
and T-Mobile perform system tests and deploy the
software product in a nationwide network to provide
wireless services to end-users like cell phones and
personal computers. The work in this paper will be
particularly beneficial to service providers.

Most software reliability growth models that exist today
[1]1 = [7] mainly address Case A, where they use defects
discovered during the testing phase to generate defect
prediction curves like exponential or S-shaped.
However, a new cloud-based tool [9] — [15] has been
recently created, using SaaS technologies [8], that
incorporates defect close and open curves. A new
modeling approach has also been proposed, that
combines a series of piecewise exponential models and
automated prediction algorithms. There is not much
research on Case B [16] —[17]. This paper concentrates
on Case B and outlines a plan for developing a digital
tool for assessing software and hardware system
reliability [18] — [19].

Figure 2 illustrates typical defect trends, including
release level (in blue), internal (in yellow), and customer
defects (in red). The internal defects are typically found
during the formal test phase. The internal defect curve
generally slows down after the last delivery date (D2),
and the customer defect curve starts at the first delivery
date (D1). We also show a defect prediction curve (in
dashed black) generated at the last delivery date with
our online tool, STAR [14] — [15]. The prediction curve is
generally higher than the actual defect curve because
the prediction curve assumes the intensity of the internal
test continues. The gap between these curves
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Figure 2. Cumulative view of internal and customer
injection and find-fix processes defect curves with a
predicted curve at delivery (D2)

represents defects not found in this release and will be
carried over to the next release. Also shown in Figure 2
is the customer defect curve, which is the difference
between the release-level and internal defect curves.

In this paper, we focus on customer defects and failures,
as highlighted in the yellow boxes in Figure 1. A software
failure denotes a system outage caused by a software
defect during an operation period. Software reliability
denotes the probability of the system operating without
a software failure during a specified period, typically
measured in failures per year. Software availability
represents the likelihood of the software system being
operational. Both software reliability and availability
metrics are defined for an operation period. Despite
frequent references to software reliability in literature,
this field requires more attention. There is often an
assumption that software defects equate to software
failures, and the software defect curve during the
operation phase will follow the extension of the defect
prediction curve.

The rest of this paper is organized as follows: Sections
Il and Il will present innovative approaches for
automatically predicting customer defects and failures
during the operational phase. A key aspect of our paper
will be to estimate the software failure rate as constant
throughout the operation period, which forms a
foundational element of our research. Detailed technical
discussions regarding these methodologies will be
provided in these sections. Additionally, in Section VI,
we will utilize multiple real-world datasets to illustrate
how defects and failures can be accurately represented
as piecewise straight-line curves.
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Figure 3. Cumulative view of customer defects

Section V will describe a plan for creating a digital tool

for self-service system (software and hardware)
reliability modeling. Our main goal is to develop a
comprehensive system (software and hardware)
reliability model, that includes algorithmic analytics
automation and the creation of a digital engineering tool
for holistic system-level reliability evaluations. First
steps involve linking common software reliability growth
models with the hardware bathtub profile. Highlighting
the constant defect growth rate during the customer
operational phase matches the flat phase seen in
hardware curves. By using the software failure rate
based on failure intensity from observed failures during
customer software operation, we aim to achieve this link
effectively. Next, integrated software and hardware
models will be suggested, treating software similar to
hardware. This approach will determine system
reliability through reliability block diagrams (RBDs),
providing metrics such as operational software reliability
and availability.

Il Prediction Model for Software Defects During
the Operational Phase

Different stages of software usage in the operational
phase have different rates of finding defects: early
customer testing, customer testing, post-deployment,
and customer migration to newer releases. To handle
this variation, we want to create a defect trend model
that covers the whole operational phase. This model will
be shown as a series of straight lines based on empirical
data. Figure 3 shows this idea with sequential lines. For
more detail, Figure 4 gives a weekly report of the trend.
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Our initial studies in this direction suggest a segmented
linear equation is expressed in a mathematical form as:

m(x) = m(x;_,) + 0; (x — xj_4)
fOI' x]'_l stx] (1)

where m(x) represents the cumulative defects at time x,
and x; represents the j-th breakpoint. The parameter 0;
is the slope of the j-th straight line, representing the
defect rate.

The main technical challenge in reaching our goal is to
develop an algorithm that can automatically detect
transition points (or change points) between each
straight line, and adjust to the different patterns in the
data. It's important that this algorithm works smoothly in
real-time, and considers new defect data as it comes in.
This will result in a segmented linear representation of
software defects during the operational phase. This
algorithm can also be applied to hardware failure data,
not just software. Moreover, we will compare the actual
hardware failure rate with the rate estimated from the bill
of materials (BOM) to provide comprehensive insights.

We have developed a novel method for automatically
detecting transition points where the slope of the
straight line changes significantly. First, we find these
transition points or time intervals where the defect trend
shows a noticeable shift, as shown in Figure 3.
Employing a straightforward straight-line model, we
continuously track the slope and detect significant
changes in the relative change of consecutive slope
values. An inflection point is established when this
relative change surpasses a predetermined threshold.
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Figure 5. Cumulative view of customer defect

Upon locating the transition point, we adjust the start
date to correspond to this point and repeat these steps
until reaching the end of the defect data. This iterative
process yields the final predicted curve, depicted in
Figure 3, comprising a series of piecewise straight-line
models, as detailed in equation (1).

Our algorithm seamlessly provides numerical solutions
in real time as new defect data emerges. By
amalgamating best-fitted straight lines for individual
time segments between transition points, we construct
a piecewise straight line. Utilizing the Project X Release
A data, we illustrate the resulting defect prediction curve
in Figure 3, aligning with the expected outcomes
outlined previously. Further examination of the
algorithm's robustness will be expounded upon in
Section 4. Additionally, a weekly perspective of actual
defects alongside the predicted curve is presented in
Figure 4.

1l. Prediction model for software failure rates

The occurrence of software failures typically remains
relatively infrequent compared to customer defects,
posing a statistical challenge in data analysis. To
overcome this hurdle, we propose the implementation
of a transformation function aimed at converting the
customer defect curve into a corresponding software
failure curve. Both curves are visually represented in
Figure 5. Initial investigations indicate that the quantile-
quantile (Q-Q) plot technique holds promise in
facilitating this transformation process. The rationale
behind the Q-Q plot technique is demonstrated through
a graphical representation of cumulative failures plotted
against cumulative customer defects, as illustrated in
Figure 6. This graphical representation unveils a linear
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alignment, suggesting a significant correlation between
the curves.

This involves transforming the original time variable x
into a new time scale u. To achieve this, we must
determine an appropriate transformation function f that
preserves the segmented linear configuration. The
resulting software failure curve will thus be represented
as follows:

I‘I(u) = n(u]'_l) + l] (U - u]'_l) for u]'_l Sus u]- (3)

The software failure rate can be obtained from the value
of 4; right after the software deployment date.

The failure rate curve n(u) can then be derived from the
defect curve m (x) via a transformation function f as:

n(u) = f (m(x)) (4)

It's crucial to acknowledge that conventional statistical
techniques like correlation coefficients are impractical
due to the dynamic nature of defect and failure data.
This dynamism presents a technical obstacle in data
management. Our proposed approach entails horizontal
and vertical shifts to align the customer defect curve
with the software failure curve. We aim to develop an
algorithm capable of numerically solving a non-linear
optimization problem, thereby pinpointing the optimal-fit
software failure curve using the customer defect curve
as a guiding metric. This algorithm will automatically
generate the software failure curve, depicted as a series
of interconnected straight lines in a piecewise manner.

The statistical transformation function comprises two
components: horizontal and vertical shifts. Put
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Figure 7. Prediction results of software customer defects and failures for four project data

differently, the initial curve, denoted as the prediction
curve in dashed black, undergoes a transformation
involving horizontal and vertical shifts to closely align
with the actual failure curve. The transformation function,
mapping (x, m(x)) coordinates to (u, n(u)), is detailed in
equations (5) and (6) for horizontal and vertical shifts,
respectively.

u=a+px ()
n(u) =y m(x) (6)

The parameter a signifies a fixed delay in weeks from
the defect curve to the failure curve, while B represents
an additional delay in the defect curve. The parameter y
is determined as the ratio of defects to failures,
indicating defects per failure. That is, this ratio
represents the portion of defects resulting in a failure.

This problem entails non-linear optimization with three
variables (or parameters) and aims to minimize the total
distance between the predicted defect curve and the
actual failure curve. Solving this problem involves
iterative numerical analysis with three-level loops and
multiple iterations for each level. Initial values,
increments, and maximum iteration counts must be

defined for each level. For a detailed explanation of this
numerical analysis, please refer to [14].

Figure 7(a) depicts the final predicted failure curve
(shown as dashed red), which should closely align with
the actual failure curve (depicted in blue). To validate the
predicted failure curve, actual failure data can be
overlaid, as demonstrated in Figure 7(a). The figure also
displays the defect rate and failure rate as 6.11
defects/week and 0.56 failures/week, respectively,
corresponding to the slopes of the two predicted curves
at deployment (D2). The ratio of defects to failures,
calculated as 0.092, represents the value of y, indicating
that only 9.2% of defects will cause a software failure.

In practice, the number of failures is typically limited,
posing challenges for the application of statistical
methods. The transformation function method outlined
in this section effectively addresses this challenge. In
the subsequent section, we will utilize Project X Release
B data to exemplify the application of the transformation
method for a limited dataset.

V. Application of the prediction methods to
other project data



To assess the effectiveness of the proposed models, we
will utilize four distinct real-world defect datasets
obtained from significant software development projects
within the telecommunications sector. These datasets
comprise customer defects identified during both
internal and operational phases, categorized based on
severity levels.

In practice, there are primarily two scenarios: A)
Software development conducted in-house, where the
software product is delivered directly to a service
provider and B) Software development outsourced to a
subcontractor, with a service provider conducting the
system test internally. In Case A, customer defect data
from system tests and operations are provided by the
service provider. In Case B, while customer defect data
are available internally, defect data during the
development and test stages are only accessible if
provided by the subcontractor.

A. In-house software development perspective

We have two consecutive releases, A and B, for each of
the two projects, X and Y, at our disposal to validate the
prediction models outlined in Sections Il and Ill. Both
projects  constitute integral elements of a
telecommunications network system known as a base
transceiver station (BTS), which facilitates wireless
communication between user equipment (e.g., a cell
phone) and a network. Project X involves a highly
demanded large-scale software development for 5G,
while Project Y encompasses a stable mid-size software
development for 4G. Figure 7 provides an overview of
customer defects and failures, along with predictions.

In both Projects X and Y, Release A boasts a significant
number of defects, making it suitable for prediction
methods. However, Release B lacks sufficient failure
data for both projects. To address this, we utilized the
values of a, B, and y of the transformation function
obtained from Release A to predict failures for Release
B in both projects. This approach is deemed reasonable
for both cases. We have demonstrated that both the
defect rate and the failure rate remain constant after
deployment. Moreover, we can reasonably employ the
transformation function from the previous release to
predict the failure rate if the failure data is insufficient.

B. Software development by a subcontractor

In this scenario, we (acting as the customer)
subcontract the software development, conduct the
system test, and provide the service to the end-user
upon readiness. We possess defect data from both the
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Figure 8. Customer test defects with multiple
deliveries by a software development subcontractor

system test and the operation phases. The dataset
below depicts defects identified during the system test
after several deliveries of a software product by a
subcontractor. Unfortunately, detailed information
regarding the project's background is limited.

Figure 8 showcases the cumulative defects detected
during the system test. Over the course of the period,
the subcontractor made four deliveries. Notably, the
initial delivery (Delivery #1) appears to encompass a
relatively small portion of the total features, followed by
a maintenance load (Delivery #2) featuring bug fixes.
Subsequently, a third delivery (Delivery #3) introduced
most of the remaining features, succeeded by another
maintenance load (Delivery #4) with bug fixes. We have
observed a similar result from our NASA data. It is
evident that the final maintenance load potentially
contained defects while maintaining the system's
stability. Once again, we have illustrated that customer
defects can be elucidated using piece-wise straight lines.
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V. Self-service system for system reliability
engineering

This section outlines a plan for deploying a self-service
system dedicated to system reliability engineering
encompassing both software and hardware aspects. As
the project is currently underway, we will provide a high-
level overview of our digital tool.

A. Models for Integrated Software and Hardware
Failure

The proposed system will utilize the algorithms and
models developed in Sections Il and Il and use
statistical methods to correlate the failure model
developed above with the flat phase of the bathtub
hardware curve to create a combined software and
hardware failure model.

B. System Reliability Modeling Digital Tool

The research endeavors to design and develop a digital
application aimed at facilitating the interactive creation
of system reliability block diagrams (RBDs), integrating
both software and hardware components. The system
will offer users several preconfigured RBD templates to
select from, including a single-unit system, a two-unit
standby system, and a two-unit active-active system, as
depicted in Figure 9.

Users will have the capability to extract hardware failure
data from a widely utilized failure rate database,
leveraging Bills of Material (BOM). Furthermore, the tool
will integrate formulas for each RBD template to
compute crucial system reliability metrics such as Mean
Time Between Failures (MTBF) and availability.

Additionally, the application will empower users to
merge these templates, enabling the creation of a
comprehensive representation of the entire system.
Users will be able to visualize software failure rate
predictions alongside the RBDs, facilitating a more
thorough comprehension of the system's overall
reliability.
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Figure 10: Reliability Block Diagram. Sample graphical editor for
system reliability block diagram. A combination of two single-unit
configura6ons and one two-unit active-active configuration.
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Figure 10 illustrates the graphical editor combining two
single-unit configurations and one two-unit active-active
configuration, while Figure 11 showcases a potential
user interface journey elucidating how the reliability
block diagram configurations may be implemented. In
this illustration, the initial screen depicts a user selecting
one of the available configurations and proceeding by
clicking the next arrow. Subsequently, the user is
directed to a screen where certain inputs can be
configured, and upon completion, the system generates
output metrics associated with the configuration and
inputs. The final screen demonstrates the possibility of
selecting multiple RBD templates and specifying the
order in which the selected templates should be
arranged. It's important to note that this is merely a
mockup, and the actual designs and implementation are
expected to occur during the implementation phase.

VI. Conclusion

In this paper, we have demonstrated that customer
defects and software failures during the operational
phase can be effectively modeled using a piecewise
straight-line approach. We have presented novel
algorithms to automate the prediction process, and their
reliability has been verified by analyzing several real-
world project datasets. This finding, implying a constant
rate of operational software reliability, opens the



possibility of developing a digital tool for self-service
system reliability modeling, covering both software and
hardware components. We have described our initial
design plan for the online tool, laying the foundation for
further development and implementation.
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