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Abstract - As artificial intelligence, automation, and
robotics become increasingly integral to modern systems,
ensuring the reliability of both software and hardware
components is paramount. Existing models primarily
address software defects during development, leaving a
critical gap in operational-phase reliability assessment.
Similarly, while hardware reliability is well-studied,
integrated models that encompass both software and
hardware are limited. This paper introduces FUSION, a
cloud-based tool designed to bridge this gap by aligning
software failure rates with hardware reliability models,
creating a unified framework for operational-phase
reliability analysis. FUSION leverages advanced analytics
and reliability block diagrams (RBDs) to provide
comprehensive system evaluations. Key contributions
include: (1) the development of an integrated software-
hardware reliability model, (2) the implementation of
automated reliability analysis algorithms, and (3) the
creation of a digital tool for system-level reliability
assessment. By integrating these elements, FUSION
enhances reliability analysis, enabling practitioners to
improve system resilience, user satisfaction, and
operational efficiency

1. Introduction

In the era of rapid technological advancements, the
integration of artificial intelligence (Al), automation, and
robotics into modern systems has become increasingly

prevalent. These technologies promise significant
enhancements in efficiency, functionality, and user
experience. However, they also introduce complex

challenges, particularly in ensuring the reliability of both
software and hardware components. Even minor defects
can lead to substantial disruptions, underscoring the critical
need for robust reliability assessment methodologies [11-
12].

Current reliability models predominantly focus on software
defects during the development phase, providing valuable
insights into potential issues before deployment [4]. Despite

their utility, a significant gap remains in assessing reliability
during the operational phase, when software interacts with
real-world conditions and user environments. This phase is
crucial, as it is often when latent defects manifest,
potentially leading to system failures [1]

On the hardware side, reliability assessment is well-
established, with numerous models and methodologies
developed to predict and mitigate failures [2]

However, the interaction between software and hardware
components adds a layer of complexity that existing models
do not fully address. Integrated reliability models that
consider both software and hardware are limited, leaving
practitioners without comprehensive tools to evaluate and
enhance system resilience [3]

To bridge this gap, we introduce FUSION, a cloud-powered
tool designed to integrate software and hardware reliability
models for operational-phase analysis. FUSION aligns
software failure rates with hardware reliability models,
creating a unified framework that leverages advanced
analytics and reliability block diagrams (RBDs) for
comprehensive system evaluations. This tool not only
facilitates accurate failure predictions but also provides
actionable insights to improve system resilience, user
satisfaction, and operational efficiency.

The key contributions of this paper are threefold: (1) the
development of an integrated software-hardware reliability
model, (2) the implementation of automated reliability
analysis algorithms, and (3) the creation of a digital tool for
system-level reliability assessment. By combining these
elements, FUSION represents a significant advancement in
reliability engineering, offering practitioners a powerful tool
to anticipate and mitigate failures in integrated systems.

2. Literature Review
2.1 Software Reliability Models

Software reliability has been extensively studied, with
numerous models developed to predict and mitigate
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software defects during the development phase [9-10].
Traditional models, such as the Jelinski-Moranda model
and the Musa-Okumoto model, focus on defect prediction
and reliability growth during software testing. These models
have been instrumental in identifying potential issues
before deployment, but they often fall short in addressing
reliability during the operational phase, where software
interacts with real-world conditions [5], [6].

Recent advancements have introduced more sophisticated
approaches, such as Bayesian networks and machine
learning-based models, which offer improved prediction
accuracy by incorporating historical defect data and real-
time monitoring. However, these models primarily
concentrate on software reliability in isolation, without
considering the interplay between software and hardware
components [7], [8].

2.2 Hardware Reliability Models

Hardware reliability assessment is a well-established field,
with models like the Weibull distribution and the Crow-
AMSAA model being widely used to predict hardware
failures. These models have been effective in various
applications, from consumer electronics to aerospace
systems, providing valuable insights into hardware
performance and failure rates [15], [16].

In recent years, there has been a growing interest in
reliability assessment methods for complex hardware
systems, such as deep neural networks (DNNs) and their
accelerators. These methods often employ fault injection,
analytical, and hybrid approaches to evaluate the reliability
of hardware components under different conditions.
Despite their effectiveness, these models typically treat
hardware reliability in isolation, without integrating software
reliability considerations [17], [18].

2.3 Integrated Software-Hardware Reliability Models

The interaction between software and hardware
components adds a layer of complexity that traditional
models do not fully address. Some recent studies have
attempted to bridge this gap by developing integrated
reliability models. For instance, Zhu and Pham [13]
proposed a novel system reliability model that incorporates
hardware failures, software failures, and hardware-
software interaction failures. This model provides a novel
perspective by classifying interaction failures into software-
induced hardware failures and hardware-induced software
failures [13].

While these integrated models represent a significant
advancement, they often rely on complex mathematical
formulations and may not be easily applicable to real-world

systems. Additionally, they may lack the scalability and
flexibility required for modern, cloud-based environments
[19], [20].

2.4 Novel Contributions of FUSION

FUSION addresses the limitations of existing models by
providing a cloud-powered tool that integrates software and
hardware reliability models for operational-phase analysis.
Unlike traditional models that focus on either software or
hardware reliability in isolation, FUSION offers a unified
framework that aligns software failure rates with hardware
reliability models. This approach leverages advanced
analytics and reliability block diagrams (RBDs) to provide
comprehensive system evaluations [21].

Key contributions of FUSION include:

1. Integrated Software-Hardware Reliability Model:
FUSION develops a combined model that aligns
software failure rates with hardware reliability behavior,
creating a unified framework for operational-phase
analysis.

2. Automated Reliability Analysis Algorithms: The tool
implements algorithms for automated reliability
analysis, enabling real-time predictions and
assessments.

3. Digital Tool for System-Level Assessments:
FUSION provides a user-friendly digital tool that
facilitates the creation and evaluation of reliability block
diagrams, offering actionable insights to improve
system resilience and operational efficiency.

By integrating these elements, FUSION represents a
significant advancement in reliability engineering, offering a
practical and scalable solution for modern, integrated
systems.

3. FUSION Overview

The methodology behind FUSION involves several key
steps and algorithms to ensure accurate and
comprehensive reliability assessments:

1. Software Customer-Found Defect Prediction:

e Operational Phase Segmentation: The
operational phase of software usage is divided into
distinct periods: early customer testing, customer
testing, post-deployment, and customer migration
to the next release. Each period exhibits varying
rates of defect identification.
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Fig. 1. An Overview of FUSION

Defect Trend Model: A defect trend model spans
the entire operational phase, represented as a
sequence of empirically derived straight lines. An
algorithm autonomously identifies the transitions
(inflection  points) between these lines,
dynamically adapting to distinct patterns within the
data.

2. Software Failure Rate Prediction:

Transformation of Defect Data: The cumulative
predicted defect curve is transformed into the
cumulative failure curve using parameters a, 3, and
y. These parameters represent horizontal shift,
scaling factor, and vertical scaling factor,
respectively.

Optimization Algorithm: The algorithm optimizes
the parameters to best fit the predicted failure curve
to the actual one. The objective function is based
on the absolute difference between predicted
defects and actual failures over the last 10 weeks.
The algorithm iterates over three levels to identify
the global minimum sum of squared differences
(SSQ).

Intelligent Interactive Graphical Editor (iGRED) for
RBDs

RBD Construction: iGRED allows users to
construct detailed RBDs for software and hardware
systems. Built-in real-time reliability metric

calculations simplify assessments and accelerate
system design.

e Preconfigured Templates: iGRED provides
templates for single-unit, active-standby, and
active-active systems. Users input failure rates and
recovery times, and iGRED calculates and displays
reliability metrics instantly.

4. Reliability Metrics Calculation

o Key Metrics: FUSION calculates key reliability
metrics, including failure rate (A), Mean Time to
Failure (MTTF), Mean Time Between Failures
(MTBF), Mean Time to Repair (MTTR), and
availability (A). These metrics are computed for
software, hardware, and the integrated system.

e Formulas and Calculations: The reliability
metrics are derived using established formulas and
methods, such as the exponential distribution for
constant failure rates and the Markov chain method
for complex configurations.

In the following subsections, we detail each of the above
components.

3.1 Software Customer-Found Defect Prediction

The operational phase of software usage can be divided
into distinct periods: early customer testing, customer
testing, post-deployment, and customer migration to the



next release. Each period exhibits varying rates of defect
identification. To account for this variability, we developed
a defect trend model that spans the entire operational
phase, represented as a sequence of empirically derived
straight lines. The primary technical challenge is creating
an algorithm that autonomously identifies the transitions
(inflection points) between these lines. This algorithm must
dynamically adapt to the distinct patterns within the data
and operate seamlessly in real-time as new defect data
becomes available.

The segmented Ilinear equation is expressed
mathematically to capture the distinct defect trends in each
period. The cumulative defects, m(x), found by time x
during inflection points (j— 1) and j is described as:

m(z) = m(z;_1) + 0;(z — z;-1) Ve <z <a; (1)
Note that 6; represents the slope of the curve during the
period. Algorithm 1 shows the algorithm that we developed.

3.2 Software Failure Rate Prediction

FUSION introduces groundbreaking methods for predicting
software defects and failures, demonstrating that software
defect and failure rates remain constant during the
operational phase. This capability is significant as it aligns
software reliability modeling with established hardware
reliability models, offering a unified approach to system
reliability. The analytics for predicting software defects are
robust enough to extend to hardware field failure data,
providing a versatile solution for reliability analysis across
various system components.
An innovative algorithm has been developed to predict
software failure rates during the operational phase. The
required input data includes the defect-predicted curve (i.e.,
the output of the defect-predicted curve) and the software
failure data (i.e., critical defects). The cumulative predicted
defect curve (X, y) is transformed into the cumulative failure
curve (u, v) using the parameters, a, B, and y:

u=a+px 2)

V=yy (3)
Parameters are interpreted as follows.
— a: Horizontal shift (right if positive, left if negative, no shift
if zero).
— B: Scaling factor (delay if greater than 1, acceleration if
less than 1, no change if 1).
— y: Vertical scaling factor (doubles height if 2, reduces to
50% if 0.5, no change if 1).

Algorithm for Software Failure Prediction

The algorithm optimizes the parameters q, 3, and y to best
fit the predicted failure curve to the actual one. The

Algorithm 1 Finding inflection points and multiple curves

1: procedure LPM((z;,y;) V0 <i<p)
for i = x; > Start the loop at zg, ys to the end wee

3: if i > 25+ 3 then
Yi—Us
1 slope = —

for j = 11 <i,j++ do

X (T; —xs) +ys

<xp.i++ do

6 y; = slope > Calculate the predicted valu

7 SSQ; = (y; — ¥5)? > This is a measure of goodness of fi

end for »

SSQ; = \,__:'/:r % > Goodness of fit for the week z; to week
10 if # > x4 + 5 then > Check if we have the last two weeks of SSQ value
1 ASSQ, = 25922550

e SSQ, 2 Q

12 ASSQ2 = SSQi 2
13 if i > 24+ 5 then
14: if (ASSQ, > 0.1) AND (ASSQ-> > 0.1) then

15 IP = Week i — 2

16 else

> IP is the Inflection Poin

17: Trs = Ti-2
18 end if
19 end if
20 end if
21 end if
end for
23 return IP
24: end procedure

Algorithm 1. Algorithm for operational software defect
prediction

objective function is based on the absolute difference
between predicted defects and actual failures over the last
10 (default) weeks. To calculate the objective function,
follow these steps:
e Calculate transformed values (u, v) using the
equations (2) and (3) for given values of a, 3, and
Y.
e The actual failure curve (xact, yact) remains on the
original (x, y) scale. Calculate vact, for u = xact

using interpolation:
Uy — Uy

X (Taet — Uu1)

Ua — Uy (4)
e Calculate the sum of the absolute differences
(SSQ) between vact, and yact:
SSQ =" [Vact — Yaci (5)
The parameter ranges are:a = 5 to 0 with a decrement of
0.5, B = 0.7 to 1.1 with an increment of 0.05, and y = 0.86
to 1.2 with an increment of 0.02.

Vact = U1 +

Solving the non-linear optimization problem:

* The algorithm iterates over three levels:

— Level 1: lterate over y from 0.86 to 1.2 with an increment
of 0.01.

— Level 2: For each value of vy, iterate over 8 from 0.7 to 1.1
with an increment of 0.01.

— Level 3: For each combination of y and B3, iterate over a
from 5 to 0 with a decrement of 0.1

+ Calculate SSQ for each combination and track the
minimum SSQ value:

— For a fixed value of y, iterate through a and B. Terminate
Level 3 if the SSQ exceeds the previous value.
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Fig. 2: A sample iGRED with the user input and the output

— Continue Level 2 until the minimum SSQ for the current y
is found.

— Repeat the process for y until the global minimum SSQ is
identified.

This algorithm provides a methodical approach to
determining the best-fit parameters that minimize
discrepancies between the predicted and actual software
failure curves.

3.3 Intelligent Interactive Graphical Editor (iGRED) for
Reliability Block Diagrams (RBDs)

iGRED, integrated into FUSION, allows users to construct
detailed reliability block diagrams (RBDs) for software
and hardware systems. Built-in real-time reliability metric
calculations simplify assessments and accelerate system
design. RBDs visually represent system configurations,
enabling reliability analysis through series and parallel
equations. IiGRED also provides preconfigured
templates for single-unit, active-standby, and active-active
systems.

Users input failure rates and recovery times, and upon
saving, iGRED instantly calculates and displays reliability
metrics. Figure 2 shows a sample iGRED with the user
input and the Fusion output.

3.3.1 Reliability Metrics

Reliability metrics evaluate system performance and
operational efficiency. Key metrics include failure rate,
Mean Time to Failure (MTTF), Mean Time Between
Failures (MTBF), Mean Time to Repair (MTTR), and
availability.

Failure Rate (A): The failure rate measures how often a
system or component fails over a specified time, expressed
as failures per unit of time (e.g., per hour or year). It is
crucial in reliability engineering to predict system reliability.
A low failure rate indicates high reliability, while a high rate
suggests frequent failures. Failure rates can be constant
(common in electronics during the useful life period) or
time-varying (changes over time, seen during early failures
or wear-out phases).

Reliability Function (R(t)): The probability that a system
operates without failure over time t. For a constant failure
rate, it follows an exponential distribution.

MTTF (Mean Time to Failure): MTTF measures the
average operational lifespan of non-repairable systems
before failure. Higher MTTF indicates greater reliability. It
applies to items like light bulbs or batteries.
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Fig. 3: Sample reliability metrics formulas for a two-unit active-active configuration

MTBF (Mean Time Between Failures): MTBF measures
the average time between failures for repairable systems.
It includes MTTF (Time before failure) and MTTR (Time to
Repair), which is the Time needed to restore functionality
after failure. MTBF = MTTF + MTTR. Higher MTBF values
indicate greater reliability, aiding maintenance planning and
uptime estimation.

Availability (A): Availability reflects the proportion of
operational time versus expected time. Calculated as A =
Uptime / (Uptime + Downtime) or A= MTTF / MTBF. High
availability (close to 1) indicates minimal downtime and is
essential for critical industries like telecommunications,
healthcare, and military applications. It supports System
Design (ensuring systems meet operational requirements),
Maintenance Planning (optimizing schedules to maximize
uptime), and SLAs (defining reliability standards such as
“99.9% uptime”).

These metrics guide reliability engineering, enabling better
design, maintenance, and operational strategies for
minimizing failures and downtime.

3.3.2 Templates for Reliability Block Diagrams

Phase | iGRED development focuses on three primary
configurations: A single-unit system with software and
hardware, a two-unit active-standby system, and a two-unit
active-active system. Phase |l will address additional
configurations.

FUSION calculates key reliability metrics, including failure
rate (frequency of failures), MTTF (average operational
lifespan before failure), reliability (percentage of systems
expected to operate without failure over one year), MTBF
(average time between successive failures, MTTR

failure), and availability (proportion of operational time
versus total expected time).

These metrics are computed for software, hardware, and
the integrated system (HW + SW), providing a
comprehensive overview of system reliability. Fig. 3 shows
the reliability metrics formulas for a two-unit active-active
template. Formulas for other templates have also been
developed using the Markov chain method, although they
are not shown here due to space limitations.

3.3.3 Combinations of the Basic Configurations /
Templates

Each template requires specific starting and ending points
to construct a network of templates. The network begins at
the Start node and ends at the End node. Complex systems
may combine series and parallel configurations. The
reliability of such systems can be calculated by breaking
them down into more straightforward series and parallel
components and then combining their reliabilities using
appropriate formulas. Sorting them topologically simplifies
the metrics calculation. Fig. 2 shows an example with three
configurations: two single-unit configurations and a two-unit
active-active load-sharing configuration. These
configurations are connected in series. Reliability metrics
are already calculated for each template, allowing us to add
them to determine the system failure rate. Figure 2 also
shows the outputs for the sample configurations. FUSION
will automatically calculate for any combinations of the
templates.



The software defect rate at deployment is 6.11 defects/week or 318.6 defects/year.
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Fig. 4. A sample output of software defect prediction algorithm

3.4 System Design and Building

FUSION enables users to design and optimize reliable
systems through advanced analytics and interactive
modeling tools. Its software failure rate prediction
component delivers accurate defect and failure forecasts,
supporting  proactive  maintenance and  system
enhancements. With IGRED’s intuitive interface and
automated calculations, users can effortlessly create
comprehensive reliability block diagrams (RBDs),
streamlining system evaluation and reliability improvement.

4. FUSION Implementation

FUSION is designed to streamline the entire workflow of
reliability assessment, encompassing data extraction, pre-
processing, core analytics, and post-processing. The
system is built on the AWS platform, ensuring scalability
and reliability. The architecture leverages several key
components and technologies:

1. Data Extraction and Pre-Processing:

e APIs and Data Collection: FUSION uses Flask APls
to collect data from various defect-tracking tools. This
data is consolidated into two optimized databases:
PostgreSQL for structured data and DynamoDB for
unstructured data.

e Pre-Processing Steps: Data undergoes rigorous
pre-processing to ensure consistency and accuracy.
This includes standardizing field and value
mappings, categorizing field values, and detecting
duplicates and cross-release defects. Data is

aggregated into weekly or specified time frames to
prepare inputs for the core analytics engine.

2. Core Analytics Engine:

e Predictive Modeling and Analytics: Developed
using the Python scientific stack, the core analytics
engine performs advanced predictive modeling and
reliability metrics calculation. It leverages libraries
such as NumPy, SciPy, and scikit-learn for statistical
analysis and machine learning.

¢ Reliability Block Diagrams (RBDs): The engine
supports the creation and evaluation of RBDs, which
visually represent system configurations and
facilitate reliability analysis through series and
parallel equations.

3. User Interface:

¢ Interactive and Intuitive Design: The user interface
is built with JavaScript ES6 and React, providing a
responsive and intuitive experience. Users can
design system reliability block diagrams, input failure

rates and recovery times, and view real-time
reliability metrics.
¢ Infrastructure Management: Terraform AWS

manages the system’s infrastructure as code (laC),
ensuring efficient deployment and scalability.

5. Results and Discussion

Fig 4 illustrates these sequential lines, visually representing
the algorithm’s results. For enhanced clarity, the figure
includes a weekly breakdown of the trend. The algorithm’s



The software failure rate at deployment is 0.68 failures/week or 35.5 failures/year.
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Fig. 5: A sample output of the software failure prediction algorithm.

utility extends beyond software defects, including hardware
failure data. Additionally, we compare the observed
hardware failure rates with those projected from the bill of
materials (BOM) to deliver a comprehensive understanding
of system reliability. This approach enables accurate
modeling of defect trends and ensures timely and effective
defect management throughout the software lifecycle. By
integrating this capability, FUSION enhances reliability
analysis for software and hardware components, providing
actionable insights to improve system performance.

Fig 5 illustrates the predicted software failure curve
alongside actual data, presented in cumulative and weekly
views. These visualizations confirm that the software failure
rate remains constant after deployment. This method has
been applied to data from multiple projects, consistently
validating these findings. A notable advantage of this
approach is its effectiveness even when the number of
failures is minimal, such as fewer than 10 occurrences. By
integrating this method, FUSION enhances the accuracy
and applicability of failure rate predictions, contributing to
improved system reliability across diverse operational
scenarios.

Figure 5: This figure showcases a sample configuration
created using the Intelligent Interactive Graphical Editor
(iGRED) integrated into FUSION. The figure includes a
pop-up input table that appears when selecting a template,
allowing users to input failure rates and recovery times. The
RBD (Reliability Block Diagram) visually represents the
system configuration, enabling reliability analysis through
series and parallel equations. The figure demonstrates the
use of preconfigured templates for single-unit, active-

standby, and active-active systems. Once the RBD is
completed, users can view real-time reliability metrics
computed at the bottom of the page. These metrics include
failure rate, Mean Time to Failure (MTTF), Mean Time
Between Failures (MTBF), Mean Time to Repair (MTTR),
and availability. iGRED simplifies the construction of
detailed RBDs and accelerates system design by providing
instant calculations and visual feedback, thereby
enhancing the overall reliability assessment process.

6. Conclusion and Future Work

This paper introduced FUSION, a cloud-based tool that
bridges a critical gap in operational-phase reliability
modeling by aligning software and hardware reliability
models. Our research shows that software failure rates
during operation can be effectively modeled as segmented
straight lines. With advanced analytics and a graphical
editor, FUSION streamlines reliability block diagram
(RBD) creation, accelerating reliability assessments and
enabling targeted improvements. FUSION combines
predictive analytics with an intuitive graphical interface,
providing system reliability engineers with a powerful tool to
anticipate and mitigate failures. This integrated approach
enhances software and hardware reliability, ensuring
overall system robustness.

By empowering practitioners to enhance system
performance, FUSION significantly boosts reliability and
customer satisfaction. This tool represents a significant
advancement in reliability engineering, setting the stage for
more resilient, integrated systems.
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