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Abstract - As artificial intelligence, automation, and 
robotics become increasingly integral to modern systems, 
ensuring the reliability of both software and hardware 
components is paramount. Existing models primarily 
address software defects during development, leaving a 
critical gap in operational-phase reliability assessment. 
Similarly, while hardware reliability is well-studied, 
integrated models that encompass both software and 
hardware are limited. This paper introduces FUSION, a 
cloud-based tool designed to bridge this gap by aligning 
software failure rates with hardware reliability models, 
creating a unified framework for operational-phase 
reliability analysis. FUSION leverages advanced analytics 
and reliability block diagrams (RBDs) to provide 
comprehensive system evaluations. Key contributions 
include: (1) the development of an integrated software-
hardware reliability model, (2) the implementation of 
automated reliability analysis algorithms, and (3) the 
creation of a digital tool for system-level reliability 
assessment. By integrating these elements, FUSION 
enhances reliability analysis, enabling practitioners to 
improve system resilience, user satisfaction, and 
operational efficiency 

1. Introduction

In the era of rapid technological advancements, the 
integration of artificial intelligence (AI), automation, and 
robotics into modern systems has become increasingly 
prevalent. These technologies promise significant 
enhancements in efficiency, functionality, and user 
experience. However, they also introduce complex 
challenges, particularly in ensuring the reliability of both 
software and hardware components. Even minor defects 
can lead to substantial disruptions, underscoring the critical 
need for robust reliability assessment methodologies [11-
12]. 

Current reliability models predominantly focus on software 
defects during the development phase, providing valuable 
insights into potential issues before deployment [4]. Despite 

their utility, a significant gap remains in assessing reliability 
during the operational phase, when software interacts with 
real-world conditions and user environments. This phase is 
crucial, as it is often when latent defects manifest, 
potentially leading to system failures [1] 

On the hardware side, reliability assessment is well-
established, with numerous models and methodologies 
developed to predict and mitigate failures [2] 

However, the interaction between software and hardware 
components adds a layer of complexity that existing models 
do not fully address. Integrated reliability models that 
consider both software and hardware are limited, leaving 
practitioners without comprehensive tools to evaluate and 
enhance system resilience [3] 

To bridge this gap, we introduce FUSION, a cloud-powered 
tool designed to integrate software and hardware reliability 
models for operational-phase analysis. FUSION aligns 
software failure rates with hardware reliability models, 
creating a unified framework that leverages advanced 
analytics and reliability block diagrams (RBDs) for 
comprehensive system evaluations. This tool not only 
facilitates accurate failure predictions but also provides 
actionable insights to improve system resilience, user 
satisfaction, and operational efficiency. 

The key contributions of this paper are threefold: (1) the 
development of an integrated software-hardware reliability 
model, (2) the implementation of automated reliability 
analysis algorithms, and (3) the creation of a digital tool for 
system-level reliability assessment. By combining these 
elements, FUSION represents a significant advancement in 
reliability engineering, offering practitioners a powerful tool 
to anticipate and mitigate failures in integrated systems. 

2. Literature Review

2.1 Software Reliability Models

Software reliability has been extensively studied, with 
numerous models developed to predict and mitigate 
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software defects during the development phase [9-10]. 
Traditional models, such as the Jelinski-Moranda model 
and the Musa-Okumoto model, focus on defect prediction 
and reliability growth during software testing. These models 
have been instrumental in identifying potential issues 
before deployment, but they often fall short in addressing 
reliability during the operational phase, where software 
interacts with real-world conditions [5], [6]. 

Recent advancements have introduced more sophisticated 
approaches, such as Bayesian networks and machine 
learning-based models, which offer improved prediction 
accuracy by incorporating historical defect data and real-
time monitoring. However, these models primarily 
concentrate on software reliability in isolation, without 
considering the interplay between software and hardware 
components [7], [8]. 

2.2 Hardware Reliability Models 

Hardware reliability assessment is a well-established field, 
with models like the Weibull distribution and the Crow-
AMSAA model being widely used to predict hardware 
failures. These models have been effective in various 
applications, from consumer electronics to aerospace 
systems, providing valuable insights into hardware 
performance and failure rates [15], [16]. 

In recent years, there has been a growing interest in 
reliability assessment methods for complex hardware 
systems, such as deep neural networks (DNNs) and their 
accelerators. These methods often employ fault injection, 
analytical, and hybrid approaches to evaluate the reliability 
of hardware components under different conditions. 
Despite their effectiveness, these models typically treat 
hardware reliability in isolation, without integrating software 
reliability considerations [17], [18]. 

2.3 Integrated Software-Hardware Reliability Models 

The interaction between software and hardware 
components adds a layer of complexity that traditional 
models do not fully address. Some recent studies have 
attempted to bridge this gap by developing integrated 
reliability models. For instance, Zhu and Pham [13] 
proposed a novel system reliability model that incorporates 
hardware failures, software failures, and hardware-
software interaction failures. This model provides a novel 
perspective by classifying interaction failures into software-
induced hardware failures and hardware-induced software 
failures [13]. 

While these integrated models represent a significant 
advancement, they often rely on complex mathematical 
formulations and may not be easily applicable to real-world 

systems. Additionally, they may lack the scalability and 
flexibility required for modern, cloud-based environments 
[19], [20]. 

2.4 Novel Contributions of FUSION 

FUSION addresses the limitations of existing models by 
providing a cloud-powered tool that integrates software and 
hardware reliability models for operational-phase analysis. 
Unlike traditional models that focus on either software or 
hardware reliability in isolation, FUSION offers a unified 
framework that aligns software failure rates with hardware 
reliability models. This approach leverages advanced 
analytics and reliability block diagrams (RBDs) to provide 
comprehensive system evaluations [21]. 

Key contributions of FUSION include: 

1. Integrated Software-Hardware Reliability Model: 
FUSION develops a combined model that aligns 
software failure rates with hardware reliability behavior, 
creating a unified framework for operational-phase 
analysis. 

2. Automated Reliability Analysis Algorithms: The tool 
implements algorithms for automated reliability 
analysis, enabling real-time predictions and 
assessments. 

3. Digital Tool for System-Level Assessments: 
FUSION provides a user-friendly digital tool that 
facilitates the creation and evaluation of reliability block 
diagrams, offering actionable insights to improve 
system resilience and operational efficiency. 

By integrating these elements, FUSION represents a 
significant advancement in reliability engineering, offering a 
practical and scalable solution for modern, integrated 
systems. 
 
3. FUSION Overview 
 
The methodology behind FUSION involves several key 
steps and algorithms to ensure accurate and 
comprehensive reliability assessments: 

1. Software Customer-Found Defect Prediction: 

• Operational Phase Segmentation: The 
operational phase of software usage is divided into 
distinct periods: early customer testing, customer 
testing, post-deployment, and customer migration 
to the next release. Each period exhibits varying 
rates of defect identification. 



• Defect Trend Model: A defect trend model spans 
the entire operational phase, represented as a 
sequence of empirically derived straight lines. An 
algorithm autonomously identifies the transitions 
(inflection points) between these lines, 
dynamically adapting to distinct patterns within the 
data. 

2. Software Failure Rate Prediction: 

• Transformation of Defect Data: The cumulative 
predicted defect curve is transformed into the 
cumulative failure curve using parameters α, β, and 
γ. These parameters represent horizontal shift, 
scaling factor, and vertical scaling factor, 
respectively. 

• Optimization Algorithm: The algorithm optimizes 
the parameters to best fit the predicted failure curve 
to the actual one. The objective function is based 
on the absolute difference between predicted 
defects and actual failures over the last 10 weeks. 
The algorithm iterates over three levels to identify 
the global minimum sum of squared differences 
(SSQ). 

3. Intelligent Interactive Graphical Editor (iGRED) for 
RBDs 

• RBD Construction: iGRED allows users to 
construct detailed RBDs for software and hardware 
systems. Built-in real-time reliability metric 

calculations simplify assessments and accelerate 
system design. 

• Preconfigured Templates: iGRED provides 
templates for single-unit, active-standby, and 
active-active systems. Users input failure rates and 
recovery times, and iGRED calculates and displays 
reliability metrics instantly. 

4. Reliability Metrics Calculation 

• Key Metrics: FUSION calculates key reliability 
metrics, including failure rate (λ), Mean Time to 
Failure (MTTF), Mean Time Between Failures 
(MTBF), Mean Time to Repair (MTTR), and 
availability (A). These metrics are computed for 
software, hardware, and the integrated system. 

• Formulas and Calculations: The reliability 
metrics are derived using established formulas and 
methods, such as the exponential distribution for 
constant failure rates and the Markov chain method 
for complex configurations. 

In the following subsections, we detail each of the above 
components. 
 
3.1 Software Customer-Found Defect Prediction 
 
The operational phase of software usage can be divided 
into distinct periods: early customer testing, customer 
testing, post-deployment, and customer migration to the 

 
Fig. 1. An Overview of FUSION 



next release. Each period exhibits varying rates of defect 
identification. To account for this variability, we developed 
a defect trend model that spans the entire operational 
phase, represented as a sequence of empirically derived 
straight lines. The primary technical challenge is creating 
an algorithm that autonomously identifies the transitions 
(inflection points) between these lines. This algorithm must 
dynamically adapt to the distinct patterns within the data 
and operate seamlessly in real-time as new defect data 
becomes available.  
The segmented linear equation is expressed 
mathematically to capture the distinct defect trends in each 
period. The cumulative defects, m(x), found by time x 
during inflection points (j – 1) and j is described as: 

 
Note that θj represents the slope of the curve during the 
period. Algorithm 1 shows the algorithm that we developed. 
 
 
3.2 Software Failure Rate Prediction 
 
FUSION introduces groundbreaking methods for predicting 
software defects and failures, demonstrating that software 
defect and failure rates remain constant during the 
operational phase. This capability is significant as it aligns 
software reliability modeling with established hardware 
reliability models, offering a unified approach to system 
reliability. The analytics for predicting software defects are 
robust enough to extend to hardware field failure data, 
providing a versatile solution for reliability analysis across 
various system components. 
An innovative algorithm has been developed to predict 
software failure rates during the operational phase. The 
required input data includes the defect-predicted curve (i.e., 
the output of the defect-predicted curve) and the software 
failure data (i.e., critical defects). The cumulative predicted 
defect curve (x, y) is transformed into the cumulative failure 
curve (u, v) using the parameters, α, β, and γ: 

u = α + βx       (2) 
v = γy           (3) 

Parameters are interpreted as follows. 
– α: Horizontal shift (right if positive, left if negative, no shift 
if zero). 
– β: Scaling factor (delay if greater than 1, acceleration if 
less than 1, no change if 1). 
– γ: Vertical scaling factor (doubles height if 2, reduces to 
50% if 0.5, no change if 1). 
 
Algorithm for Software Failure Prediction 
 
The algorithm optimizes the parameters α, β, and γ to best 
fit the predicted failure curve to the actual one. The 

objective function is based on the absolute difference 
between predicted defects and actual failures over the last 
10 (default) weeks. To calculate the objective function, 
follow these steps: 

• Calculate transformed values (u, v) using the 
equations (2) and (3) for given values of α, β, and 
γ. 

• The actual failure curve (xact, yact) remains on the 
original (x, y) scale. Calculate vact, for u = xact 
using interpolation: 

(4) 
• Calculate the sum of the absolute differences 

(SSQ) between vact, and yact: 

    (5) 
The parameter ranges are:α = 5 to 0 with a decrement of 
0.5, β = 0.7 to 1.1 with an increment of 0.05, and γ = 0.86 
to 1.2 with an increment of 0.02. 
 
Solving the non-linear optimization problem: 
• The algorithm iterates over three levels: 
– Level 1: Iterate over γ from 0.86 to 1.2 with an increment 
of 0.01. 
– Level 2: For each value of γ, iterate over β from 0.7 to 1.1 
with an increment of 0.01. 
– Level 3: For each combination of γ and β, iterate over α 
from 5 to 0 with a decrement of 0.1 
• Calculate SSQ for each combination and track the 
minimum SSQ value: 
– For a fixed value of γ, iterate through α and β. Terminate 
Level 3 if the SSQ exceeds the previous value. 

 
Algorithm 1. Algorithm for operational software defect 
prediction 
 



– Continue Level 2 until the minimum SSQ for the current γ 
is found. 
– Repeat the process for γ until the global minimum SSQ is 
identified. 
 
This algorithm provides a methodical approach to 
determining the best-fit parameters that minimize 
discrepancies between the predicted and actual software 
failure curves.  
 
3.3 Intelligent Interactive Graphical Editor (iGRED) for 
Reliability Block Diagrams (RBDs) 

iGRED, integrated into FUSION, allows users to construct 
detailed reliability block diagrams (RBDs) for software 
and hardware systems. Built-in real-time reliability metric 
calculations simplify assessments and accelerate system 
design. RBDs visually represent system configurations, 
enabling reliability analysis through series and parallel 
equations. iGRED also provides preconfigured 
templates for single-unit, active-standby, and active-active 
systems. 
Users input failure rates and recovery times, and upon 
saving, iGRED instantly calculates and displays reliability 
metrics. Figure 2 shows a sample iGRED with the user 
input and the Fusion output. 

 
3.3.1 Reliability Metrics 
Reliability metrics evaluate system performance and 
operational efficiency. Key metrics include failure rate, 
Mean Time to Failure (MTTF), Mean Time Between 
Failures (MTBF), Mean Time to Repair (MTTR), and 
availability. 
 
Failure Rate (λ): The failure rate measures how often a 
system or component fails over a specified time, expressed 
as failures per unit of time (e.g., per hour or year). It is 
crucial in reliability engineering to predict system reliability. 
A low failure rate indicates high reliability, while a high rate 
suggests frequent failures. Failure rates can be constant 
(common in electronics during the useful life period) or 
time-varying (changes over time, seen during early failures 
or wear-out phases). 
 
Reliability Function (R(t)): The probability that a system 
operates without failure over time t. For a constant failure 
rate, it follows an exponential distribution. 
 
MTTF (Mean Time to Failure): MTTF measures the 
average operational lifespan of non-repairable systems 
before failure. Higher MTTF indicates greater reliability. It 
applies to items like light bulbs or batteries. 

 

 
Fig. 2: A sample iGRED with the user input and the output 

 
 



 

MTBF (Mean Time Between Failures): MTBF measures 
the average time between failures for repairable systems. 
It includes MTTF (Time before failure) and MTTR (Time to 
Repair), which is the Time needed to restore functionality 
after failure. MTBF = MTTF + MTTR. Higher MTBF values 
indicate greater reliability, aiding maintenance planning and 
uptime estimation. 
 
Availability (A): Availability reflects the proportion of 
operational time versus expected time. Calculated as A = 
Uptime / (Uptime + Downtime) or A = MTTF / MTBF. High 
availability (close to 1) indicates minimal downtime and is 
essential for critical industries like telecommunications, 
healthcare, and military applications. It supports System 
Design (ensuring systems meet operational requirements), 
Maintenance Planning (optimizing schedules to maximize 
uptime), and SLAs (defining reliability standards such as 
“99.9% uptime”). 
 
These metrics guide reliability engineering, enabling better 
design, maintenance, and operational strategies for 
minimizing failures and downtime.  
 
3.3.2 Templates for Reliability Block Diagrams 
 
Phase I iGRED development focuses on three primary 
configurations: A single-unit system with software and 
hardware, a two-unit active-standby system, and a two-unit 
active-active system. Phase II will address additional 
configurations. 
FUSION calculates key reliability metrics, including failure 
rate (frequency of failures), MTTF (average operational 
lifespan before failure), reliability (percentage of systems 
expected to operate without failure over one year), MTBF 
(average time between successive failures, MTTR 

(average time required to restore functionality after a 

failure), and availability (proportion of operational time 
versus total expected time). 
These metrics are computed for software, hardware, and 
the integrated system (HW + SW), providing a 
comprehensive overview of system reliability. Fig. 3 shows 
the reliability metrics formulas for a two-unit active-active 
template. Formulas for other templates have also been 
developed using the Markov chain method, although they 
are not shown here due to space limitations. 
 
3.3.3 Combinations of the Basic Configurations / 
Templates 

Each template requires specific starting and ending points 
to construct a network of templates. The network begins at 
the Start node and ends at the End node. Complex systems 
may combine series and parallel configurations. The 
reliability of such systems can be calculated by breaking 
them down into more straightforward series and parallel 
components and then combining their reliabilities using 
appropriate formulas. Sorting them topologically simplifies 
the metrics calculation. Fig. 2 shows an example with three 
configurations: two single-unit configurations and a two-unit 
active-active load-sharing configuration. These 
configurations are connected in series. Reliability metrics 
are already calculated for each template, allowing us to add 
them to determine the system failure rate. Figure 2 also 
shows the outputs for the sample configurations. FUSION 
will automatically calculate for any combinations of the 
templates. 
 

 
Fig. 3: Sample reliability metrics formulas for a two-unit active-active configuration 

 



3.4 System Design and Building 

FUSION enables users to design and optimize reliable 
systems through advanced analytics and interactive 
modeling tools. Its software failure rate prediction 
component delivers accurate defect and failure forecasts, 
supporting proactive maintenance and system 
enhancements. With iGRED’s intuitive interface and 
automated calculations, users can effortlessly create 
comprehensive reliability block diagrams (RBDs), 
streamlining system evaluation and reliability improvement. 
 
 
4. FUSION Implementation 
 
FUSION is designed to streamline the entire workflow of 
reliability assessment, encompassing data extraction, pre-
processing, core analytics, and post-processing. The 
system is built on the AWS platform, ensuring scalability 
and reliability. The architecture leverages several key 
components and technologies: 

1. Data Extraction and Pre-Processing: 

• APIs and Data Collection: FUSION uses Flask APIs 
to collect data from various defect-tracking tools. This 
data is consolidated into two optimized databases: 
PostgreSQL for structured data and DynamoDB for 
unstructured data. 

• Pre-Processing Steps: Data undergoes rigorous 
pre-processing to ensure consistency and accuracy. 
This includes standardizing field and value 
mappings, categorizing field values, and detecting 
duplicates and cross-release defects. Data is 

aggregated into weekly or specified time frames to 
prepare inputs for the core analytics engine. 

2. Core Analytics Engine: 

• Predictive Modeling and Analytics: Developed 
using the Python scientific stack, the core analytics 
engine performs advanced predictive modeling and 
reliability metrics calculation. It leverages libraries 
such as NumPy, SciPy, and scikit-learn for statistical 
analysis and machine learning. 

• Reliability Block Diagrams (RBDs): The engine 
supports the creation and evaluation of RBDs, which 
visually represent system configurations and 
facilitate reliability analysis through series and 
parallel equations. 

3. User Interface: 

• Interactive and Intuitive Design: The user interface 
is built with JavaScript ES6 and React, providing a 
responsive and intuitive experience. Users can 
design system reliability block diagrams, input failure 
rates and recovery times, and view real-time 
reliability metrics. 

• Infrastructure Management: Terraform AWS 
manages the system’s infrastructure as code (IaC), 
ensuring efficient deployment and scalability. 

 
5. Results and Discussion 
 
Fig 4 illustrates these sequential lines, visually representing 
the algorithm’s results. For enhanced clarity, the figure 
includes a weekly breakdown of the trend. The algorithm’s 

 
Fig. 4. A sample output of software defect prediction algorithm 

 



utility extends beyond software defects, including hardware 
failure data. Additionally, we compare the observed 
hardware failure rates with those projected from the bill of 
materials (BOM) to deliver a comprehensive understanding 
of system reliability. This approach enables accurate 
modeling of defect trends and ensures timely and effective 
defect management throughout the software lifecycle. By 
integrating this capability, FUSION enhances reliability 
analysis for software and hardware components, providing 
actionable insights to improve system performance. 
 
Fig 5 illustrates the predicted software failure curve 
alongside actual data, presented in cumulative and weekly 
views. These visualizations confirm that the software failure 
rate remains constant after deployment. This method has 
been applied to data from multiple projects, consistently 
validating these findings. A notable advantage of this 
approach is its effectiveness even when the number of 
failures is minimal, such as fewer than 10 occurrences. By 
integrating this method, FUSION enhances the accuracy 
and applicability  of failure rate predictions, contributing to 
improved system reliability across diverse operational 
scenarios. 
 
Figure 5: This figure showcases a sample configuration 
created using the Intelligent Interactive Graphical Editor 
(iGRED) integrated into FUSION. The figure includes a 
pop-up input table that appears when selecting a template, 
allowing users to input failure rates and recovery times. The 
RBD (Reliability Block Diagram) visually represents the 
system configuration, enabling reliability analysis through 
series and parallel equations. The figure demonstrates the 
use of preconfigured templates for single-unit, active-

standby, and active-active systems. Once the RBD is 
completed, users can view real-time reliability metrics 
computed at the bottom of the page. These metrics include 
failure rate, Mean Time to Failure (MTTF), Mean Time 
Between Failures (MTBF), Mean Time to Repair (MTTR), 
and availability. iGRED simplifies the construction of 
detailed RBDs and accelerates system design by providing 
instant calculations and visual feedback, thereby 
enhancing the overall reliability assessment process. 
 

6. Conclusion and Future Work 

This paper introduced FUSION, a cloud-based tool that 
bridges a critical gap in operational-phase reliability 
modeling by aligning software and hardware reliability 
models. Our research shows that software failure rates 
during operation can be effectively modeled as segmented 
straight lines. With advanced analytics and a graphical 
editor, FUSION streamlines reliability block diagram 
(RBD) creation, accelerating reliability assessments and 
enabling targeted improvements. FUSION combines 
predictive analytics with an intuitive graphical interface, 
providing system reliability engineers with a powerful tool to 
anticipate and mitigate failures. This integrated approach 
enhances software and hardware reliability, ensuring 
overall system robustness. 
 
By empowering practitioners to enhance system 
performance, FUSION significantly boosts reliability and 
customer satisfaction. This tool represents a significant 
advancement in reliability engineering, setting the stage for 
more resilient, integrated systems. 
 

 
Fig. 5: A sample output of the software failure prediction algorithm. 
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