
SUMMARY & CONCLUSIONS 

This paper introduces STAR, a next-generation, cloud-
based tool that transforms software reliability assessment 
through data-driven prediction and decision support. Unlike 
traditional single-curve software reliability growth models 
(SRGMs), STAR employs a flexible multi-curve algorithm 
that adapts to the dynamics of modern software development, 
including agile practices, staggered feature releases, and 
variable defect discovery rates. 

STAR enables project managers, developers, and 
quality assurance teams to make informed decisions 
throughout the software development lifecycle. By 
integrating real project data, STAR provides: 
• Accurate predictions of defect arrival, closure, and open 

backlog 
• Key quality metrics such as %Residual and %Open 

defects 
• Visualizations that make complex statistical results 

easily interpretable 
• Early defect prediction using effort-based leading 

indicators 
• Simulations of corrective actions and their real-time 

impact on quality 
Through its intuitive web-based interface, STAR 

ensures global teams' accessibility at any time. It eliminates 
the need for specialized statistical expertise or local 
installations, making high-end software quality analytics 
available as a Software-as-a-Service (SaaS) platform. STAR 
has successfully applied its technology in industrial and 
research settings, including deployment in Nokia’s flagship 
division, a current trial collaboration with NASA, and an 
extended trial with System Engineering Consultant (SEC). 

Several enhancements are planned for STAR. These 
include: 
• Integration of AI to support adaptive learning in defect 

prediction and automated anomaly detection 
• Incorporation of cybersecurity factors, enabling STAR 

to assess vulnerabilities in defect data related to security 
• Expansion into hardware reliability analysis by 

integrating STAR with FUSION, an NSF-funded digital 

engineering platform, enabling concurrent evaluation of 
hardware and software failures 
A novel prediction technique based on historical release 

data, akin to machine learning for dynamic environments, 
further improves early-stage forecasting. Together, these 
advancements position STAR as a powerful, extensible 
platform capable of evolving with the needs of modern 
software and system engineering organizations. 

1. INTRODUCTION AND BACKGROUND 

Digital transformation [1] involves adopting digital 
technologies to improve or reinvent products, services, and 
operations, ultimately enhancing value through innovation 
and efficiency. At its core, cloud technologies enable agility, 
collaboration, and customer focus. Imagine a future where 
quality teams no longer manage custom spreadsheets. 
Instead, data from defect logging systems is automatically 
collected, cleaned, and transformed into reliability analytics. 
Quality managers can access real-time metrics to guide 
launch decisions without relying on technical experts or 
complex models. STAR, the tool introduced in this paper, 
enables this future, empowering teams to make data-driven 
decisions with ease and precision. 

The software reliability market is undergoing a 
significant shift, driven by growing demand for specialized 
tools. The software quality assurance sector is expected to 
reach $20.8 billion by 2030, growing at a CAGR of 8.8% [2]. 
This paper introduces STAR—a cloud-based software 
reliability tool that combines advanced analytics and 
visualization to support users across all roles in 
understanding and improving software quality. 

a. Software Development Process vs. Defect Injection & 
Removal 
A software release consists of newly developed features 

or functionalities that go through a structured software 
development lifecycle, including requirements specification, 
software design, coding, and testing against predefined 
criteria. This lifecycle is illustrated in Figure 1. Upon 
completing internal testing, the software enters the 
acceptance testing phase at the customer site before final 
deployment for commercial use. Software defects are 
identified during both internal and customer testing. Quality 
improves over time through an iterative “find-and-fix” 
process that includes internal testing, customer testing, and 
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operational feedback. As a result, development teams often 
address defects discovered internally and externally after the 
initial software delivery. 

 
Nevertheless, some defects surface during the 

operational phase after deployment, potentially leading to 
service interruptions or system failures. Understanding the 
distinction between defects and failures is essential. In this 
study, we classify critical severity defects as software 
failures, based on standard severity classifications. This 
paper focuses on defects found during software development 
and testing. 

b. Software Reliability Growth Modeling (SRGM) 
A primary challenge engineering teams face is 

evaluating software quality and using that evaluation to 
guide release decisions. Predicting the number of remaining 
defects and their potential impact is particularly critical in 
projects with fixed delivery schedules. 

 
Software Reliability Growth Models (SRGMs) describe 

how the reliability of software improves as defects are 
discovered and corrected during testing or operation. 
Reliability is not static; it evolves as failures are observed 
and fixes are applied. SRGMs provide a quantitative 
framework to measure, predict, and manage this 
improvement.  

These models analyze cumulative defect detection data 
to identify the trend or shape of the defect curve. Early work 
on SRGMs in the 1970s [3–5] began with simple 
representations, such as step functions for defect rates, a 
significant advancement at the time. Later, the models 
evolved into stochastic processes, most notably exponential 
growth curves [5], where defect discovery was modeled as a 
time-dependent process. Applied initially to system test data, 
these models proved reliable and gained broad adoption, 
encouraging researchers to extend their applicability to 
broader testing phases. 

As software testing became more complex, modeling 
defect discovery across the entire test lifecycle grew 
increasingly complex. Over 200 SRGMs have since been 
proposed [6–14], developed under various assumptions, and 
tailored to different testing environments. Most of these 

models rely on a single, continuous curve to describe the 
defect discovery process throughout testing. 

We selected the top five SRGMs based on their high 
citation frequency, broad industrial adoption, historical 
significance, and diversity of modeling approaches. Table I 
summarizes each model with its year of introduction, type, 
underlying assumptions, key equations, and representative 
applications. 

 

 

 

 

 

 

 

 

c. Non-Homogeneous Poisson Process (NHPP) 

Most SRGMs are formulated using the concept of the 
Non-Homogeneous Poisson Process (NHPP). To 
conceptualize this, consider a finite number a of defects. The 
probability that a defect is discovered by time t follows a 
cumulative distribution function F(t). The defect discovery 
process N(t) can initially be modeled using a binomial 
distribution, as shown in equation (1). 

𝑃𝑃{𝑁𝑁(𝑡𝑡) = 𝑛𝑛} = �𝑎𝑎𝑛𝑛� 𝐹𝐹(𝑡𝑡)𝑛𝑛[1 − 𝐹𝐹(𝑡𝑡)]𝑎𝑎−𝑛𝑛  (1) 

 
Since a is typically large, the binomial distribution is 
approximated by a Poisson distribution with a mean value 
function m(t), as shown in equation (2).  

 

𝑃𝑃{𝑁𝑁(𝑡𝑡) = 𝑛𝑛} = 𝑚𝑚(𝑡𝑡)𝑛𝑛 exp {−𝑚𝑚(𝑡𝑡)}
𝑛𝑛!�   (2) 

 
FIGURE 1. SOFTWARE DEVELOPMENT PROCESS 
VS. DEFECT INJECTION AND REMOVAL 

 

 

 

 

 

FIGURE 2. SAMPLE SOFTWARE RELIABILITY 
GROWTH MODEL (SRGM) 

 

 
 

 

 

TABLE 1. COMPARISON OF TOP 5 SRGMS 



 

This yields a generalized NHPP model. It implies that 
the number of defects found in a given time interval follows 
a Poisson distribution with a mean based on the interval’s 
length. The mean value function m(t) = aF(t) represents the 
expected number of defects detected by time t. For example, 

the exponential model is described using NHPP, where the 
mean value function has the form shown in equation (3). 

 

𝑚𝑚(𝑡𝑡) = 𝑎𝑎{1 − exp(−𝑏𝑏𝑏𝑏)}     (3) 
 

The NHPP assumption enables statistical methods, such as 
maximum likelihood estimation (MLE), to determine 
parameters a and b, as well as confidence intervals, using 
standard approximation techniques. 

Consider the following example in Figure 2: Suppose an 
SRGM forecasts 4500 defects. At week 19 (the current 
time), 2500 defects have been found. Assuming testing 
continues steadily, the model predicts an additional 1200 
defects will be discovered over the next 11 weeks before 
release. Thus, the number of remaining defects at delivery is 
800 (= 4500 – 3700), resulting in a residual defect 
percentage of approximately 18% (= 800 / 4500).  

These metrics are crucial for informed decision-making 
and will be further explored in Section 4. 

d. State-of-the-Art in SRGMs 
Exponential SRGMs [3, 4, 5] introduced more than 40 

years ago remain widely used due to their simplicity and 

clarity. They assume that the software contains a finite 
number of defects, each of which is independently 
discovered over time according to an exponential 
distribution. These models utilize the NHPP framework to 
statistically estimate key parameters, forming the basis for 
various software quality metrics. While initially applied to 

system testing, exponential models have since been adapted 
to span the entire testing lifecycle, including feature, 
integration, and functional testing. 

Newer models introduce additional complexity to 
enhance adaptability by incorporating alternative statistical 
distributions, such as the Weibull, Gamma, and logistic 
distributions. These modifications enable more accurate 
modeling of real-world defect discovery patterns, 
particularly when the data indicates fluctuating detection 
rates. Such models often result in S-shaped curves, as 
described in references [6-9, 11-13].  

2. STAR OVERVIEW 

a. What is STAR? 

STAR [15, 16] is a transformative digital engineering 
tool designed to modernize software quality assurance by 
integrating data-driven analysis into the software release 
decision-making process. This advanced, cloud-based 
platform enables real-time evaluation of software quality. It 
is developed explicitly for practitioners responsible for 
ensuring product quality and making critical decisions about 
software readiness for release. Being web-based and fully 
automated, STAR promotes seamless collaboration across 
different teams, projects, and product components.  

 
FIGURE 3. STAR EXECUTIVE SUMMARY VIEW 

 



STAR combines the principles of Software as a Service 
(SaaS), automated analytics, and dynamic visualizations to 
address many of the questions and challenges. As a SaaS 
solution, STAR enables users to access the platform from 
any location, eliminating the need for software installation 
or maintenance, and significantly improving usability and 
deployment speed. By embedding automated analytics, 
STAR removes the need for specialized domain expertise, 
making advanced statistical modeling accessible to a broader 
range of users. Its visualization capabilities simplify 
complex results, allowing stakeholders to quickly interpret 
trends and insights, thereby supporting faster, evidence-
based decision-making. 

Figure 3 showcases STAR outputs, including predicted 
and actual defect arrival, closure, and open curves. The top-
left table shows the current quality snapshot at two key 
milestones: D1 (Delivery for Trial) and D2 (Delivery for 
Deployment). This enables project managers to assess 
whether the software meets the defined quality thresholds 
for each stage. Additional tables provide supportive 
quantitative data, while the charts visually compare actual 
trends with predicted ones. Analytics behind the charts will 
be discussed in Section 4.  

STAR also addresses the broader challenges raised in 
earlier sections, especially those related to accessibility, 
collaboration, and technical barriers. A previous version of 
STAR [17-19] was tailored and deployed in Nokia’s leading 
business unit, where it played a key role in supporting their 
Quality Improvement Process (QIP). The current version is 
also undergoing a trial collaboration with NASA, further 
validating its applicability in complex, high-stakes 
environments. 

b. STAR ARCHITECTURE 

STAR streamlines the entire data processing pipeline—
from raw input acquisition to final analytics output. Its 
architecture, illustrated in Figure 4, is deployed on the AWS 
cloud platform and designed to handle scalability, 
performance, and interoperability. 

The process begins with data extraction from various 
defect tracking systems via RESTful APIs implemented in 
Flask. Extracted data is stored in two separate databases: 
PostgreSQL for structured data and DynamoDB (a NoSQL 
database) for unstructured or semi-structured data. This 
dual-database approach enhances performance and 
scalability across queries and analytics. Before storage, a 
comprehensive pre-processing phase ensures that the data is 
consistently formatted and prepared. This step includes 
time-based aggregation (e.g., weekly bins) and alignment of 
input variables for the analytics engine. A crucial pre-
processing function is to harmonize inconsistencies across 
multiple sources and projects. For example, different 
systems might use labels for the same attribute, such as 
‘priority’ versus ‘severity’. STAR resolves these 
discrepancies through intelligent field mapping and 
normalization. 

Pre-processing also handles contextual interpretation, 
such as mapping a defect to a specific geographic region or 

organizational unit, and detecting duplicates or cross-release 
redundancies. These functions ensure that quality 
assessments and cross-project comparisons remain valid and 
meaningful. The core analytics engine is built in Python, 
enabling advanced statistical modeling and machine 
learning capabilities. The user interface uses JavaScript ES6 
and the React framework, ensuring a modern, responsive, 
and intuitive user experience. STAR uses Terraform for 
Infrastructure as Code (IaC) to support automated 
deployment and configuration management. These 
architectural elements provide a powerful, flexible 
foundation for delivering robust, real-time insights into 
software quality across complex, multi-release 
environments. 

3. STAR User Input Data 

STAR provides a user-friendly, menu-driven interface 
to simplify the configuration and uploading of data for 
analysis. To begin, users navigate the release configuration 
page by selecting the “User Inputs” menu and clicking 
“Release Config.” This page is organized into two main 
sections: one for entering release parameters and another for 
uploading defect data. In the release parameters section, 
users can enter key project milestone dates. These include 
the project start date, D1 (Delivery for Trial), and D2 
(Delivery for Deployment). Accurate input of these dates is 
essential for aligning STAR’s analytics with the project 
timeline. 

Users should click the “Download Sample Defects” link 
to upload defect data. This action provides a downloadable 
template, shown in Figure 8, which outlines the required data 
format. Users must populate this template with their defect 
data, ensuring it conforms to the format and instructions 
provided at the bottom of the page. Once the defect data has 
been saved in CSV format, users can select the file using the 
“CHOOSE CSV FILE” button. After selecting the 
appropriate file, clicking the “UPLOAD DEFECTS” button 
initiates the upload process. 

Upon successful upload, STAR automatically displays 
the uploaded data below the upload box for user verification.  

This visual feedback lets users confirm that their data 
has been correctly formatted and processed. The same 
upload procedure applies to effort data, which is used for 
early defect prediction and further analytics within the 
STAR platform. 

4. STAR Analytics 

 
FIGURE 4 - STAR ARRIVAL CURVE - LOGIC 

 
 

 



a. Defect Trend Analysis 
This section presents innovative methods for predicting 
defect arrival, closure, and open curves. We also provide 
sample STAR outputs. 
• Defect Arrival Curve 

Traditional software reliability models often use a 
single-curve approach to represent defect arrivals. In 
contrast, STAR implements a multi-curve method based on 
multiple exponential models, each corresponding to a 
specific development phase. This is particularly useful when 
features are gradually introduced, resulting in distinct waves 
of defect arrivals. An algorithm automatically detects 
inflection points—where the trend shifts—and applies 
maximum likelihood estimation to determine model 
parameters. The result is a highly accurate piecewise 
exponential fit that outperforms single-curve models. Figure 
4 illustrates the logic of piecewise exponential curves. 
Figure 3 shows a sample output of the STAR arrival curve, 
which appears near-perfect. 

Theoretically, for each period i, the cumulative defects 
mi(t) are modeled as: 

 

𝑚𝑚𝑖𝑖(𝑡𝑡) =  𝑎𝑎𝑖𝑖[1 − exp{−𝑏𝑏𝑖𝑖(𝑡𝑡 − 𝑡𝑡𝑖𝑖−1)}] +
 𝑚𝑚𝑖𝑖−1(𝑡𝑡𝑖𝑖−1)       ∀ 𝑡𝑡𝑖𝑖−1 < 𝑡𝑡 <  𝑡𝑡𝑖𝑖    (4) 

 

where ai and bi are parameters for total defects and 
defect rate, and t lies between two inflection points, ti-1 and 
ti. This algorithm's flexibility accommodates various data 
shapes and sizes. 
• Defect Closure Curve 

Closure curve predictions are derived by shifting the 
predicted arrival curve to the right, based on actual closure 
data. Typically, the last two closure data points determine 
the optimal shift. Figure 3 illustrates the arrival and closure 
curves, which help demonstrate how closely the closure 
curve aligns with the arrival curve. 
• Defect Open Curve 

The open defect count—also known as backlog—is 
calculated as the difference between the arrival and closure 
curves: 

Open Defects = Arrival Defects - Closure Defects  (5) 

 This metric is crucial for determining readiness for 
delivery. Figure 3 shows the strong alignment between 
actual and predicted open defect curves. 

b. Key Metrics for Software Quality Assurance 

Predicted arrival, closure, and open curves enable the 
calculation of essential quality metrics: 
• % Residual Defects 

We standardize residual defects by the total number of 
defects, making this metric applicable to a diverse range of 
projects. Its definition is as follows: 

 

% 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 (6) 

 

Residual defects are expressed as a percentage of the total 
predicted defects: Acceptable (Green): ≤ 15%, Warning 
(Yellow): 15%–25%, At Risk (Red): > 25%. 
• % Open Defects 

The defects found normalize open defects as:  

% 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

  (7) 

Our recommended threshold values, grounded in practical 
experience, are as follows: Acceptable (Green): ≤ 5%, 
Warning (Yellow): 5%–10%, At Risk (Red): > 10%. 
• Release-Readiness Assessment 

Combining the residual and open defect metrics allows 
a visual readiness assessment. STAR calculates critical 
metrics such as %Residual Defects and %Open Defects to 
help evaluate whether a software release meets the desired 
quality thresholds. These metrics are illustrated in Figure 3, 
providing clear indicators of release preparedness at key 
milestones, such as D1 and D2. In the example, D2 
(Deployment) meets quality standards, while D1 (Trial) does 
not. 
c. Early Defect Prediction for Software Release Planning 

Conventional SRGMs rely on actual defect data, 
limiting their utility in early planning. STAR addresses this 
by forecasting defects using early effort data, which is 
crucial for resource allocation and risk management in fast-
paced environments. 
• Input Data for Early Prediction 

Effort data serves as a proxy for early defect prediction, 
as development effort reflects the complexity and content 
growth, and test effort mirrors test progress, correlating with 
defect detection.  
• Preprocessing Effort Data 

Effort data is transformed to enable prediction: (a) 
Normalize Development Effort (NDE) by test progress, (b) 
Compute Defect Density (DD), which is defects per effort 
hour, and (c) Calculate Target Defects (TD) at D1 and D2 
by multiplying effort hours by DD. 

 
FIGURE 5 – EARLY DEFECT PREDICTION WITH 
ACTUAL DATA 

 
 

 



 
• Transformation Algorithm 

A transformation function shifts the normalized effort 
curve horizontally (α, β) and vertically (γ) to match the TD 
values. Equations (12) and (13) define the mapping from (x, 
y) coordinates to (xnew, ynew). 

 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 =  𝛼𝛼 +  𝛽𝛽𝛽𝛽      (12) 
𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 =  𝛾𝛾𝛾𝛾      (13) 
 
The optimization minimizes the difference between 
predicted and target defects. This three-variable nonlinear 
problem is solved numerically using nested iterations. 
Figure 5 shows high accuracy between early predictions and 
defect data. STAR automates the early defect prediction 
process and predicts potential defect patterns using 
development and test effort data even before defect data 
becomes available.  
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