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SUMMARY & CONCLUSIONS

This paper introduces STAR, a next-generation, cloud-
based tool that transforms software reliability assessment
through data-driven prediction and decision support. Unlike
traditional single-curve software reliability growth models
(SRGMs), STAR employs a flexible multi-curve algorithm
that adapts to the dynamics of modern software development,
including agile practices, staggered feature releases, and
variable defect discovery rates.

STAR enables project managers, developers, and
quality assurance teams to make informed decisions
throughout the software development lifecycle. By
integrating real project data, STAR provides:

e  Accurate predictions of defect arrival, closure, and open
backlog

e Key quality metrics such as %Residual and %Open
defects

e Visualizations that make complex statistical results
easily interpretable

e Early defect prediction using effort-based leading
indicators

e Simulations of corrective actions and their real-time
impact on quality

Through its intuitive web-based interface, STAR
ensures global teams' accessibility at any time. It eliminates
the need for specialized statistical expertise or local
installations, making high-end software quality analytics
available as a Software-as-a-Service (SaaS) platform. STAR
has successfully applied its technology in industrial and
research settings, including deployment in Nokia’s flagship
division, a current trial collaboration with NASA, and an
extended trial with System Engineering Consultant (SEC).

Several enhancements are planned for STAR. These
include:

o Integration of Al to support adaptive learning in defect
prediction and automated anomaly detection

e Incorporation of cybersecurity factors, enabling STAR
to assess vulnerabilities in defect data related to security

e Expansion into hardware reliability analysis by
integrating STAR with FUSION, an NSF-funded digital

engineering platform, enabling concurrent evaluation of

hardware and software failures

A novel prediction technique based on historical release
data, akin to machine learning for dynamic environments,
further improves early-stage forecasting. Together, these
advancements position STAR as a powerful, extensible
platform capable of evolving with the needs of modern
software and system engineering organizations.

1. INTRODUCTION AND BACKGROUND

Digital transformation [1] involves adopting digital
technologies to improve or reinvent products, services, and
operations, ultimately enhancing value through innovation
and efficiency. At its core, cloud technologies enable agility,
collaboration, and customer focus. Imagine a future where
quality teams no longer manage custom spreadsheets.
Instead, data from defect logging systems is automatically
collected, cleaned, and transformed into reliability analytics.
Quality managers can access real-time metrics to guide
launch decisions without relying on technical experts or
complex models. STAR, the tool introduced in this paper,
enables this future, empowering teams to make data-driven
decisions with ease and precision.

The software reliability market is undergoing a
significant shift, driven by growing demand for specialized
tools. The software quality assurance sector is expected to
reach $20.8 billion by 2030, growing at a CAGR of 8.8% [2].
This paper introduces STAR—a cloud-based software
reliability tool that combines advanced analytics and
visualization to support users across all roles in
understanding and improving software quality.

a. Software Development Process vs. Defect Injection &
Removal

A software release consists of newly developed features
or functionalities that go through a structured software
development lifecycle, including requirements specification,
software design, coding, and testing against predefined
criteria. This lifecycle is illustrated in Figure 1. Upon
completing internal testing, the software enters the
acceptance testing phase at the customer site before final
deployment for commercial use. Software defects are
identified during both internal and customer testing. Quality
improves over time through an iterative “find-and-fix”
process that includes internal testing, customer testing, and
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FIGURE 1. SOFTWARE DEVELOPMENT PROCESS
VS. DEFECT INJECTION AND REMOVAL

operational feedback. As a result, development teams often
address defects discovered internally and externally after the
initial software delivery.

Nevertheless, some defects surface during the
operational phase after deployment, potentially leading to
service interruptions or system failures. Understanding the
distinction between defects and failures is essential. In this
study, we classify critical severity defects as software
failures, based on standard severity classifications. This
paper focuses on defects found during software development
and testing.

b.  Software Reliability Growth Modeling (SRGM)

A primary challenge engineering teams face is
evaluating software quality and using that evaluation to
guide release decisions. Predicting the number of remaining
defects and their potential impact is particularly critical in
projects with fixed delivery schedules.

Software Reliability Growth Models (SRGMs) describe
how the reliability of software improves as defects are
discovered and corrected during testing or operation.
Reliability is not static; it evolves as failures are observed
and fixes are applied. SRGMs provide a quantitative
framework to measure, predict, and manage this
improvement.

These models analyze cumulative defect detection data
to identify the trend or shape of the defect curve. Early work
on SRGMs in the 1970s [3-5] began with simple
representations, such as step functions for defect rates, a
significant advancement at the time. Later, the models
evolved into stochastic processes, most notably exponential
growth curves [5], where defect discovery was modeled as a
time-dependent process. Applied initially to system test data,
these models proved reliable and gained broad adoption,
encouraging researchers to extend their applicability to
broader testing phases.

As software testing became more complex, modeling
defect discovery across the entire test lifecycle grew
increasingly complex. Over 200 SRGMs have since been
proposed [6—14], developed under various assumptions, and
tailored to different testing environments. Most of these

models rely on a single, continuous curve to describe the
defect discovery process throughout testing.
We selected the top five SRGMs based on their high

citation frequency, broad industrial adoption, historical
significance, and diversity of modeling approaches. Table I
summarizes each model with its year of introduction, type,
underlying assumptions, key equations, and representative
applications.
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Jelinski— 1972 Execution-time Fixed faults; equal Mt)  remaining faults Foundational,
Moranda hazard; failure rate drops teaching,

as faults are removed benchmark
Littlewood— 1973 Bayesian Prior on failure intensity;  Posterior « prior x Limited data;
Verrall update with data likelihood parameter

uncertainty

Goel- 1979 NHPP Poisson arrivals; m(t) = a (1 - exp(-bt)) Widely used
Okumoto (Exponential) exponential decay in rate baseline, industry
Yamada S- 1983 NHPP (S-shaped)  Learning effects: slow- m(t)=a (1 — (1+bt) exp(— Projects with
Shaped then-fast-then-saturate bt)) delayed detection
Musa— 1984 NHPP Logarithmic decay in the  m(z) = (1/6) In(1+6Nt) Industrial use, Bell

Okumoto (Logarithmic) execution time domain Labs, NASA

TABLE 1. COMPARISON OF TOP 5 SRGMS

¢.  Non-Homogeneous Poisson Process (NHPP)

Most SRGMs are formulated using the concept of the
Non-Homogeneous  Poisson Process (NHPP). To
conceptualize this, consider a finite number a of defects. The
probability that a defect is discovered by time ¢ follows a
cumulative distribution function F(¢). The defect discovery
process N(f) can initially be modeled using a binomial
distribution, as shown in equation (1).
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Since a is typically large, the binomial distribution is
approximated by a Poisson distribution with a mean value
function m(f), as shown in equation (2).
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FIGURE 2. SAMPLE SOFTWARE RELIABILITY
GROWTH MODEL (SRGM)



This yields a generalized NHPP model. It implies that
the number of defects found in a given time interval follows
a Poisson distribution with a mean based on the interval’s
length. The mean value function m(t) = aF(¢) represents the
expected number of defects detected by time 7. For example,

Will we be ready for delivery on time with acceptable quality? @

clarity. They assume that the software contains a finite
number of defects, each of which is independently
discovered over time according to an exponential
distribution. These models utilize the NHPP framework to
statistically estimate key parameters, forming the basis for
various software quality metrics. While initially applied to

Defect Arrival / Closure

Percentage Residual Defects (Will we find enough defects?) 25.8% 12.1% Arrival 1,387 1,704 2,019 2,296
Percentage Open Defects (Will we fix enough defects?) 10.6% 4.2% Closure 1,189 1,524 1,935 2,296
Open 198 180 84 0
Will we find enough defects? @ Will we fix enough defects? @
Defects Remaining Until 316 632 90% Lower/Upper Limit 168/191 68/100
Defects Remaining After 592 277 Open Defects 180 84
Percentage Residual Defects 25.8% 12.1% Percentage Open 10.6% 4.2%
Cumulative Defect Prediction Open Defect Prediction
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FIGURE 3. STAR EXECUTIVE SUMMARY VIEW

the exponential model is described using NHPP, where the
mean value function has the form shown in equation (3).

m(t) = a{l — exp(~bt)} (3)

The NHPP assumption enables statistical methods, such as
maximum likelihood estimation (MLE), to determine
parameters a and b, as well as confidence intervals, using
standard approximation techniques.

Consider the following example in Figure 2: Suppose an
SRGM forecasts 4500 defects. At week 19 (the current
time), 2500 defects have been found. Assuming testing
continues steadily, the model predicts an additional 1200
defects will be discovered over the next 11 weeks before
release. Thus, the number of remaining defects at delivery is
800 (= 4500 — 3700), resulting in a residual defect
percentage of approximately 18% (= 800 / 4500).

These metrics are crucial for informed decision-making
and will be further explored in Section 4.
d. State-of-the-Art in SRGMs

Exponential SRGMs [3, 4, 5] introduced more than 40
years ago remain widely used due to their simplicity and
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system testing, exponential models have since been adapted
to span the entire testing lifecycle, including feature,
integration, and functional testing.

Newer models introduce additional complexity to
enhance adaptability by incorporating alternative statistical
distributions, such as the Weibull, Gamma, and logistic
distributions. These modifications enable more accurate
modeling of real-world defect discovery patterns,
particularly when the data indicates fluctuating detection
rates. Such models often result in S-shaped curves, as
described in references [6-9, 11-13].

2. STAR OVERVIEW
a. Whatis STAR?

STAR [15, 16] is a transformative digital engineering
tool designed to modernize software quality assurance by
integrating data-driven analysis into the software release
decision-making process. This advanced, cloud-based
platform enables real-time evaluation of software quality. It
is developed explicitly for practitioners responsible for
ensuring product quality and making critical decisions about
software readiness for release. Being web-based and fully
automated, STAR promotes seamless collaboration across
different teams, projects, and product components.



STAR combines the principles of Software as a Service
(SaaS), automated analytics, and dynamic visualizations to
address many of the questions and challenges. As a SaaS
solution, STAR enables users to access the platform from
any location, eliminating the need for software installation
or maintenance, and significantly improving usability and
deployment speed. By embedding automated analytics,
STAR removes the need for specialized domain expertise,
making advanced statistical modeling accessible to a broader
range of users. Its visualization capabilities simplify
complex results, allowing stakeholders to quickly interpret
trends and insights, thereby supporting faster, evidence-
based decision-making.

Figure 3 showcases STAR outputs, including predicted
and actual defect arrival, closure, and open curves. The top-
left table shows the current quality snapshot at two key
milestones: D1 (Delivery for Trial) and D2 (Delivery for
Deployment). This enables project managers to assess
whether the software meets the defined quality thresholds
for each stage. Additional tables provide supportive
quantitative data, while the charts visually compare actual
trends with predicted ones. Analytics behind the charts will
be discussed in Section 4.

STAR also addresses the broader challenges raised in
earlier sections, especially those related to accessibility,
collaboration, and technical barriers. A previous version of
STAR [17-19] was tailored and deployed in Nokia’s leading
business unit, where it played a key role in supporting their
Quality Improvement Process (QIP). The current version is
also undergoing a trial collaboration with NASA, further
validating its applicability in complex, high-stakes
environments.

b. STAR ARCHITECTURE

STAR streamlines the entire data processing pipeline—
from raw input acquisition to final analytics output. Its
architecture, illustrated in Figure 4, is deployed on the AWS
cloud platform and designed to handle scalability,
performance, and interoperability.

The process begins with data extraction from various
defect tracking systems via RESTful APIs implemented in
Flask. Extracted data is stored in two separate databases:
PostgreSQL for structured data and DynamoDB (a NoSQL
database) for unstructured or semi-structured data. This
dual-database approach enhances performance and
scalability across queries and analytics. Before storage, a
comprehensive pre-processing phase ensures that the data is
consistently formatted and prepared. This step includes
time-based aggregation (e.g., weekly bins) and alignment of
input variables for the analytics engine. A crucial pre-
processing function is to harmonize inconsistencies across
multiple sources and projects. For example, different
systems might use labels for the same attribute, such as
‘priority’ versus ‘severity’. STAR resolves these
discrepancies through intelligent field mapping and
normalization.

Pre-processing also handles contextual interpretation,
such as mapping a defect to a specific geographic region or

organizational unit, and detecting duplicates or cross-release
redundancies. These functions ensure that quality
assessments and cross-project comparisons remain valid and
meaningful. The core analytics engine is built in Python,
enabling advanced statistical modeling and machine
learning capabilities. The user interface uses JavaScript ES6
and the React framework, ensuring a modern, responsive,
and intuitive user experience. STAR uses Terraform for
Infrastructure as Code (IaC) to support automated
deployment and configuration management. These
architectural elements provide a powerful, flexible
foundation for delivering robust, real-time insights into
software  quality = across complex, multi-release
environments.

3. STAR User Input Data
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FIGURE 4 - STAR ARRIVAL CURVE - LOGIC

STAR provides a user-friendly, menu-driven interface
to simplify the configuration and uploading of data for
analysis. To begin, users navigate the release configuration
page by selecting the “User Inputs” menu and clicking
“Release Config.” This page is organized into two main
sections: one for entering release parameters and another for
uploading defect data. In the release parameters section,
users can enter key project milestone dates. These include
the project start date, D1 (Delivery for Trial), and D2
(Delivery for Deployment). Accurate input of these dates is
essential for aligning STAR’s analytics with the project
timeline.

Users should click the “Download Sample Defects” link
to upload defect data. This action provides a downloadable
template, shown in Figure 8, which outlines the required data
format. Users must populate this template with their defect
data, ensuring it conforms to the format and instructions
provided at the bottom of the page. Once the defect data has
been saved in CSV format, users can select the file using the
“CHOOSE CSV FILE” button. After selecting the
appropriate file, clicking the “UPLOAD DEFECTS” button
initiates the upload process.

Upon successful upload, STAR automatically displays
the uploaded data below the upload box for user verification.

This visual feedback lets users confirm that their data
has been correctly formatted and processed. The same
upload procedure applies to effort data, which is used for
early defect prediction and further analytics within the
STAR platform.

4. STAR Analytics



a. Defect Trend Analysis
This section presents innovative methods for predicting
defect arrival, closure, and open curves. We also provide
sample STAR outputs.
e Defect Arrival Curve

Traditional software reliability models often use a
single-curve approach to represent defect arrivals. In
contrast, STAR implements a multi-curve method based on
multiple exponential models, each corresponding to a
specific development phase. This is particularly useful when
features are gradually introduced, resulting in distinct waves
of defect arrivals. An algorithm automatically detects
inflection points—where the trend shifts—and applies
maximum likelihood estimation to determine model
parameters. The result is a highly accurate piecewise
exponential fit that outperforms single-curve models. Figure
4 illustrates the logic of piecewise exponential curves.
Figure 3 shows a sample output of the STAR arrival curve,
which appears near-perfect.

Theoretically, for each period i, the cumulative defects
m;(t) are modeled as:

m;(t) = a;[1 — exp{—b;(t — t;_1)}] +
mi_4(ti-1) Vit <t <t (4)

where a; and b; are parameters for total defects and
defect rate, and ¢ lies between two inflection points, #.; and
t. This algorithm's flexibility accommodates various data
shapes and sizes.
e  Defect Closure Curve

Closure curve predictions are derived by shifting the
predicted arrival curve to the right, based on actual closure
data. Typically, the last two closure data points determine
the optimal shift. Figure 3 illustrates the arrival and closure
curves, which help demonstrate how closely the closure
curve aligns with the arrival curve.
e Defect Open Curve

The open defect count—also known as backlog—is
calculated as the difference between the arrival and closure
curves:

Open Defects = Arrival Defects - Closure Defects 5)

This metric is crucial for determining readiness for
delivery. Figure 3 shows the strong alignment between
actual and predicted open defect curves.

b. Key Metrics for Software Quality Assurance

Predicted arrival, closure, and open curves enable the
calculation of essential quality metrics:
e 9% Residual Defects

We standardize residual defects by the total number of
defects, making this metric applicable to a diverse range of
projects. Its definition is as follows:

Total Defects—Defects Found

% Residual Defects = Total Defects

(6)

Residual defects are expressed as a percentage of the total
predicted defects: Acceptable (Green): < 15%, Warning
(Yellow): 15%-25%, At Risk (Red): > 25%.
e % Open Defects

The defects found normalize open defects as:

Defects Found—Defects Fixed
Defects Found

% Open Defects =

(7)

Our recommended threshold values, grounded in practical
experience, are as follows: Acceptable (Green): < 5%,
Warning (Yellow): 5%—-10%, At Risk (Red): > 10%.
e Release-Readiness Assessment

Combining the residual and open defect metrics allows
a visual readiness assessment. STAR calculates critical
metrics such as %Residual Defects and %Open Defects to
help evaluate whether a software release meets the desired
quality thresholds. These metrics are illustrated in Figure 3,
providing clear indicators of release preparedness at key
milestones, such as D1 and D2. In the example, D2
(Deployment) meets quality standards, while D1 (Trial) does
not.
c¢. Early Defect Prediction for Software Release Planning
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FIGURE 5 — EARLY DEFECT PREDICTION WITH
ACTUAL DATA

Conventional SRGMs rely on actual defect data,
limiting their utility in early planning. STAR addresses this
by forecasting defects using early effort data, which is
crucial for resource allocation and risk management in fast-
paced environments.

e Input Data for Early Prediction

Effort data serves as a proxy for early defect prediction,
as development effort reflects the complexity and content
growth, and test effort mirrors test progress, correlating with
defect detection.

e  Preprocessing Effort Data

Effort data is transformed to enable prediction: (a)
Normalize Development Effort (NDE) by test progress, (b)
Compute Defect Density (DD), which is defects per effort
hour, and (c) Calculate Target Defects (TD) at D1 and D2
by multiplying effort hours by DD.



e  Transformation Algorithm

A transformation function shifts the normalized effort
curve horizontally (a, B) and vertically (y) to match the TD
values. Equations (12) and (13) define the mapping from (x,
) coordinates to (Xnew, Vnew)-

Xpew = @+ Bx (12)
Ynew = VY (13)

The optimization minimizes the difference between
predicted and target defects. This three-variable nonlinear
problem is solved numerically using nested iterations.
Figure 5 shows high accuracy between early predictions and
defect data. STAR automates the early defect prediction
process and predicts potential defect patterns using
development and test effort data even before defect data
becomes available.
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