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Abstract - Small, agile, and CI/CD software teams operate in short cycles, with sparse data and 
limited quality assurance resources, making early quality assessment and defect prediction 
particularly difficult. Traditional reliability and defect models, developed for larger, more stable 
projects, often fail to provide timely or reliable insights in these environments. This paper 
introduces the Agile Development Manager (ADM), a lightweight analytics module that extends 
the STAR quality-intelligence platform to small-scale projects. ADM applies segmented linear 
modeling over short rolling windows to capture evolving defect trends and provide early, 
stability-aware predictions with minimal data requirements. Experimental results using real 
project data demonstrate how ADM supports early risk visibility, improves prediction behavior, 
and enables proactive corrective actions in fast-cycle development environments. 

1. Introduction 

Agile and continuous integration/continuous delivery (CI/CD) practices [1–3] have reshaped 
modern software development by enabling rapid iteration, frequent releases, and close 
alignment with customer needs. Small development teams, in particular, rely on short 
development cycles and automated pipelines to deliver functionality quickly and respond to 
change. However, these same characteristics complicate quality management. Sparse defect 
data, compressed schedules, and limited access to dedicated quality assurance resources often 
force teams into reactive modes, where defects are addressed only after they accumulate and 
begin to threaten delivery commitments. 

Traditional software reliability and defect prediction models [4–15] were primarily developed 
for environments with longer development phases, stable testing periods, and higher defect 
volumes. These assumptions rarely hold in small agile projects, where defect arrivals are 
irregular, testing is continuous, and system behavior evolves rapidly as features are integrated. 
As a result, conventional models often struggle to converge, produce unstable predictions, or 
deliver signals too late to support effective corrective action. 

Recent research and industrial practice increasingly emphasize lightweight, incremental 
analytics capable of operating under sparse data conditions while still providing early, 
actionable insight. In particular, there is growing demand for short-window modeling, 



continuous trend assessment, and early indicators of instability that can support day-to-day 
agile decision-making. However, most existing tools emphasize descriptive dashboards rather 
than predictive, adaptive modeling. 

To address this gap, this paper introduces the Agile Development Manager (ADM), a lightweight 
analytics module that extends the STAR quality-intelligence platform [16–18] to small-scale agile 
and CI/CD projects. ADM is designed to provide early defect-trend visibility, short-horizon 
prediction, and stability-aware modeling without imposing heavy data or process overhead. By 
applying segmented linear modeling over small, rolling time windows, ADM captures evolving 
defect dynamics and supports continuous assessment of project health. This paper presents 
ADM’s methodology, demonstrates its behavior through experimental results, and discusses 
how lightweight prediction can support proactive quality management in fast-cycle software 
development environments. 

2. ADM Overview and Prediction Methodology 

ADM is a lightweight predictive quality analytics module designed for small development teams 
operating under agile and CI/CD practices. Unlike traditional reliability and defect growth 
models, which typically assume long lifecycles, stable testing phases, and large historical 
datasets, ADM is engineered to operate under sparse data conditions, short iterations, and 
continuously evolving project environments. ADM extends the STAR quality-intelligence 
platform with analytics optimized for incremental development, providing an entry point for 
predictive quality management with minimal configuration and operational overhead. As 
projects scale or data maturity increases, teams can transition seamlessly from ADM to full STAR 
analytics without disrupting workflows. 

ADM continuously ingests lightweight defect and development activity data from agile 
toolchains and applies incremental modeling techniques to generate short-horizon defect 
forecasts, closure projections, and stability indicators. These outputs are designed to support 
operational decisions such as sprint planning, backlog prioritization, and release-readiness 
assessment. By emphasizing near-term trends rather than retrospective metrics, ADM enables 
small teams to detect emerging instability and intervene before defect accumulation impacts 
delivery. 

At the core of ADM is segmented linear modeling [19] applied over short, rolling time windows. 
Instead of fitting a single global growth curve, ADM represents cumulative defect behavior as a 
sequence of locally linear segments, each capturing the defect trend over a specific 
development interval. This structure allows the model to adapt rapidly to regime changes, 
including feature expansion, architectural refactoring, improvements to test automation, and 
shifts into stabilization phases. As new data becomes available, inflection points are identified, 



segments are updated, and predictions are revised, producing a continuously adapting model of 
defect arrival and closure dynamics. 

ADM analyzes defect data using small, fixed-duration increments (for example, daily or two-day 
windows). Within each increment, cumulative defect arrival and closure data are evaluated, and 
candidate linear segments are fit. When a statistically meaningful change in trend is detected, 
an inflection point is introduced, and a new segment is created. The segmented linear equation 
is formulated to capture distinct defect trends in each period. The cumulative defects, m(x), 
observed by time x between inflection points (j−1) and j, are described as: 

 

where: 

• τj is the j-th inflection point, 

• m(τj−1) is the cumulative number of defects at the previous inflection, and 

• θj represents the slope of the curve during the period, corresponding to the local defect 
arrival or closure rate. 

This formulation allows ADM to explicitly represent changing defect dynamics, rather than 
forcing all project behavior into a single averaged model.  

Figure 1 illustrates how ADM constructs a cumulative defect-arrival trend using incremental 
data windows, enabling early prediction even with limited observations. The resulting arrival 
curve is then used to forecast the total number of defects expected by the end of development 
(D₀). Figure 2 shows how ADM detects inflection points in the defect data and adaptively 
updates both defect-arrival and defect-closure prediction curves as new observations become 
available. Defect closure is modeled independently, and the difference between the predicted 
arrival and closure curves defines the open-defect curve, representing detected but unresolved 
defects. The quality objective is to minimize the number of open defects at D₀ to improve 
release readiness and delivery stability. 

Each time new data arrives, ADM reevaluates the most recent segment and determines 
whether the current slope remains valid or whether a new inflection point should be 
introduced. This continuous recalibration produces short-term forecasts for defect arrival and 
closure while preserving previously learned behavior. Figure 3 illustrates how predictions 
evolve, with early projections stabilizing as more data becomes available. This stability behavior 
is critical in agile environments. Early in a sprint or release cycle, predictions may shift as limited 
data is incorporated. As development progresses, slopes converge, and the prediction bands 
narrow, providing greater confidence for planning, resourcing, and release-readiness decisions. 



By combining segmented modeling with short rolling windows, ADM achieves three objectives 
essential for small teams: rapid responsiveness to changing project conditions, mathematically 
interpretable trend representation, and early visibility into defect trajectories. Teams gain timely 
forecasts of defect growth and closure capability, allowing them to adjust testing intensity, 
backlog priorities, and stabilization activities before quality risks accumulate. 

3. Case Study and Experimental Results - Impact of Working-Day Normalization 

This section presents experimental results from applying ADM to a representative small agile 
software project. The objective is to evaluate ADM’s ability to generate early predictions, adapt 
to changing defect dynamics, and improve prediction stability under sparse-data conditions. The 
study also examines the impact of time-scale normalization, specifically, the removal of non-
working days, on prediction accuracy. 

Figures 1 and 2 show ADM’s defect arrival and closure predictions generated using incremental 
data windows early in the development cycle. Despite limited initial data, ADM constructs 
segmented linear models that capture emerging trends and automatically introduce inflection 
points when statistically meaningful changes are detected. This enables usable forecasts long 
before traditional models would converge. Figure 3 illustrates the evolution of predictions over 
time. Early in the cycle, prediction slopes vary as new data arrives. As development progresses, 
the segmented structure stabilizes, slopes converge, and forecast variance narrows. This 
behavior demonstrates ADM’s ability to balance responsiveness with stability—adapting quickly 
when conditions change, while avoiding excessive oscillation once trends are established. 

Figures 4, 5, and 6 examine the same project data after eliminating non-working days 
(weekends and holidays) and recalculating cumulative defect curves using only working days. 
This transformation has a measurable effect on early-phase predictions. In Figure 4, the 
apparent low defect detection rate observed in the early calendar-day model disappears when 
defect activity is expressed in working-day time. The initial slope becomes consistent with later 
development phases, eliminating the artificial flattening caused by weekends and holidays. This 
indicates that early underestimation of defect rates was not a process effect, but a time-scale 
artifact. Figures 5 and 6 further show that working-day normalization produces smoother 
segmented fits, more consistent slopes, and earlier stabilization of predictions. Forecast 
accuracy improves because ADM’s segmented models are driven by actual engineering activity 
rather than idle calendar intervals. This effect is significant for small agile projects, where total 
defect volumes are low and a small number of non-working days can significantly distort 
perceived defect rates. By aligning time measurement with actual development effort, ADM 
improves sensitivity, reduces noise, and strengthens the reliability of early predictions. The 
normalization by working-day time is analogous to the execution time model [8]. 



The experimental results demonstrate that ADM’s segmented modeling approach provides 
stable and responsive defect trend prediction even under sparse, short-window data conditions 
typical of small agile projects. The figures show that ADM captures both early-stage volatility 
and later stabilization, enabling meaningful predictions before traditional methods become 
effective. A key observation is the strong sensitivity of prediction accuracy to data 
normalization. Figures 4–6 illustrate that removing non-working days significantly improves 
trend clarity and early-phase prediction stability. This confirms that defect rates based on 
effective working days provide a more accurate representation of engineering activity, 
particularly for small teams generating low daily defect volumes. From an engineering 
perspective, these results indicate that lightweight, window-based predictive analytics can 
support actionable quality management without requiring large defect datasets or long test 
phases. ADM enables early detection of abnormal trends, supports continuous calibration of 
development effort, and provides a practical foundation for proactive corrective actions within 
agile and CI/CD workflows. 

4. Conclusion and Future Work 

This paper introduces ADM, a lightweight quality-intelligence module designed to support 
small, agile, and CI/CD software teams through segmented, window-based defect modeling. The 
presented methodology demonstrates that meaningful prediction and early-risk visibility can be 
achieved even under sparse data conditions, where traditional reliability and defect models 
typically underperform. The experimental results confirm that ADM can stabilize early 
predictions, capture evolving defect trends, and provide actionable insight without imposing 
heavy process or data-collection overhead. 

Future work will focus on expanding ADM’s modeling depth and operational integration. 
Planned directions include incorporating severity-aware and component-level modeling, 
adaptive window selection, and automated calibration of inflection points. Additional validation 
across multiple industrial projects is also scheduled to quantify prediction accuracy, robustness, 
and decision impact. Longer-term research will explore integrating ADM outputs with 
corrective-action optimization and AI-assisted development analytics further to enhance 
proactive quality management in fast-cycle software environments. 
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Fig. 1. ADM predictions of defect detection curves for a small agile project. 



 

Fig. 2. ADM predictions of defect detection and fix curves for a small agile project. 

 

Fig. 3. Prediction stability of the defect detection curve for a small agile project. 



 

Fig. 4. ADM predictions of the defect detection curve for a small agile project based on working 
days. 

 

Fig. 5. ADM predictions of defect detection and fix curves for a small agile project based on 
working days. 



 

Fig. 6. Prediction stability of the defect detection curve for a small agile project based on 
working days. 

 

 


