ADM: An Agile Development Manager for Early Defect Prediction in Small Software
Teams

Kazuhira Okumoto
Sakura Software Solutions, LLC, Naperville, IL, USA 60563

Keywords: Agile software analytics; defect prediction; lightweight reliability modeling; CI/CD
quality management; software quality intelligence

Abstract - Small, agile, and Cl/CD software teams operate in short cycles, with sparse data and
limited quality assurance resources, making early quality assessment and defect prediction
particularly difficult. Traditional reliability and defect models, developed for larger, more stable
projects, often fail to provide timely or reliable insights in these environments. This paper
introduces the Agile Development Manager (ADM), a lightweight analytics module that extends
the STAR quality-intelligence platform to small-scale projects. ADM applies segmented linear
modeling over short rolling windows to capture evolving defect trends and provide early,
stability-aware predictions with minimal data requirements. Experimental results using real
project data demonstrate how ADM supports early risk visibility, improves prediction behavior,
and enables proactive corrective actions in fast-cycle development environments.

1. Introduction

Agile and continuous integration/continuous delivery (CI/CD) practices [1-3] have reshaped
modern software development by enabling rapid iteration, frequent releases, and close
alignment with customer needs. Small development teams, in particular, rely on short
development cycles and automated pipelines to deliver functionality quickly and respond to
change. However, these same characteristics complicate quality management. Sparse defect
data, compressed schedules, and limited access to dedicated quality assurance resources often
force teams into reactive modes, where defects are addressed only after they accumulate and
begin to threaten delivery commitments.

Traditional software reliability and defect prediction models [4—15] were primarily developed
for environments with longer development phases, stable testing periods, and higher defect
volumes. These assumptions rarely hold in small agile projects, where defect arrivals are
irregular, testing is continuous, and system behavior evolves rapidly as features are integrated.
As a result, conventional models often struggle to converge, produce unstable predictions, or
deliver signals too late to support effective corrective action.

Recent research and industrial practice increasingly emphasize lightweight, incremental
analytics capable of operating under sparse data conditions while still providing early,
actionable insight. In particular, there is growing demand for short-window modeling,

continuous trend assessment, and early indicators of instability that can support day-to-day
agile decision-making. However, most existing tools emphasize descriptive dashboards rather
than predictive, adaptive modeling.

To address this gap, this paper introduces the Agile Development Manager (ADM), a lightweight
analytics module that extends the STAR quality-intelligence platform [16—18] to small-scale agile
and CI/CD projects. ADM is designed to provide early defect-trend visibility, short-horizon
prediction, and stability-aware modeling without imposing heavy data or process overhead. By
applying segmented linear modeling over small, rolling time windows, ADM captures evolving
defect dynamics and supports continuous assessment of project health. This paper presents
ADM'’s methodology, demonstrates its behavior through experimental results, and discusses
how lightweight prediction can support proactive quality management in fast-cycle software
development environments.

2. ADM Overview and Prediction Methodology

ADM is a lightweight predictive quality analytics module designed for small development teams
operating under agile and CI/CD practices. Unlike traditional reliability and defect growth
models, which typically assume long lifecycles, stable testing phases, and large historical
datasets, ADM is engineered to operate under sparse data conditions, short iterations, and
continuously evolving project environments. ADM extends the STAR quality-intelligence
platform with analytics optimized for incremental development, providing an entry point for
predictive quality management with minimal configuration and operational overhead. As
projects scale or data maturity increases, teams can transition seamlessly from ADM to full STAR
analytics without disrupting workflows.

ADM continuously ingests lightweight defect and development activity data from agile
toolchains and applies incremental modeling techniques to generate short-horizon defect
forecasts, closure projections, and stability indicators. These outputs are designed to support
operational decisions such as sprint planning, backlog prioritization, and release-readiness
assessment. By emphasizing near-term trends rather than retrospective metrics, ADM enables
small teams to detect emerging instability and intervene before defect accumulation impacts
delivery.

At the core of ADM is segmented linear modeling [19] applied over short, rolling time windows.
Instead of fitting a single global growth curve, ADM represents cumulative defect behavior as a
sequence of locally linear segments, each capturing the defect trend over a specific
development interval. This structure allows the model to adapt rapidly to regime changes,
including feature expansion, architectural refactoring, improvements to test automation, and
shifts into stabilization phases. As new data becomes available, inflection points are identified,

segments are updated, and predictions are revised, producing a continuously adapting model of
defect arrival and closure dynamics.

ADM analyzes defect data using small, fixed-duration increments (for example, daily or two-day
windows). Within each increment, cumulative defect arrival and closure data are evaluated, and
candidate linear segments are fit. When a statistically meaningful change in trend is detected,
an inflection point is introduced, and a new segment is created. The segmented linear equation
is formulated to capture distinct defect trends in each period. The cumulative defects, m(x),
observed by time x between inflection points (j-1) and j, are described as:

m(:n) = m('rj_l) + 0_7(33 — Tj—l)a Tj—1 <z< Tj

where:
e Tjis the j-th inflection point,
e m(tj-1) is the cumulative number of defects at the previous inflection, and

e Oj represents the slope of the curve during the period, corresponding to the local defect
arrival or closure rate.

This formulation allows ADM to explicitly represent changing defect dynamics, rather than
forcing all project behavior into a single averaged model.

Figure 1 illustrates how ADM constructs a cumulative defect-arrival trend using incremental
data windows, enabling early prediction even with limited observations. The resulting arrival
curve is then used to forecast the total number of defects expected by the end of development
(Do). Figure 2 shows how ADM detects inflection points in the defect data and adaptively
updates both defect-arrival and defect-closure prediction curves as new observations become
available. Defect closure is modeled independently, and the difference between the predicted
arrival and closure curves defines the open-defect curve, representing detected but unresolved
defects. The quality objective is to minimize the number of open defects at Do to improve
release readiness and delivery stability.

Each time new data arrives, ADM reevaluates the most recent segment and determines
whether the current slope remains valid or whether a new inflection point should be
introduced. This continuous recalibration produces short-term forecasts for defect arrival and
closure while preserving previously learned behavior. Figure 3 illustrates how predictions
evolve, with early projections stabilizing as more data becomes available. This stability behavior
is critical in agile environments. Early in a sprint or release cycle, predictions may shift as limited
data is incorporated. As development progresses, slopes converge, and the prediction bands
narrow, providing greater confidence for planning, resourcing, and release-readiness decisions.

By combining segmented modeling with short rolling windows, ADM achieves three objectives
essential for small teams: rapid responsiveness to changing project conditions, mathematically
interpretable trend representation, and early visibility into defect trajectories. Teams gain timely
forecasts of defect growth and closure capability, allowing them to adjust testing intensity,
backlog priorities, and stabilization activities before quality risks accumulate.

3. Case Study and Experimental Results - Impact of Working-Day Normalization

This section presents experimental results from applying ADM to a representative small agile
software project. The objective is to evaluate ADM'’s ability to generate early predictions, adapt
to changing defect dynamics, and improve prediction stability under sparse-data conditions. The
study also examines the impact of time-scale normalization, specifically, the removal of non-
working days, on prediction accuracy.

Figures 1 and 2 show ADM'’s defect arrival and closure predictions generated using incremental
data windows early in the development cycle. Despite limited initial data, ADM constructs
segmented linear models that capture emerging trends and automatically introduce inflection
points when statistically meaningful changes are detected. This enables usable forecasts long
before traditional models would converge. Figure 3 illustrates the evolution of predictions over
time. Early in the cycle, prediction slopes vary as new data arrives. As development progresses,
the segmented structure stabilizes, slopes converge, and forecast variance narrows. This
behavior demonstrates ADM’s ability to balance responsiveness with stability—adapting quickly
when conditions change, while avoiding excessive oscillation once trends are established.

Figures 4, 5, and 6 examine the same project data after eliminating non-working days
(weekends and holidays) and recalculating cumulative defect curves using only working days.
This transformation has a measurable effect on early-phase predictions. In Figure 4, the
apparent low defect detection rate observed in the early calendar-day model disappears when
defect activity is expressed in working-day time. The initial slope becomes consistent with later
development phases, eliminating the artificial flattening caused by weekends and holidays. This
indicates that early underestimation of defect rates was not a process effect, but a time-scale
artifact. Figures 5 and 6 further show that working-day normalization produces smoother
segmented fits, more consistent slopes, and earlier stabilization of predictions. Forecast
accuracy improves because ADM’s segmented models are driven by actual engineering activity
rather than idle calendar intervals. This effect is significant for small agile projects, where total
defect volumes are low and a small number of non-working days can significantly distort
perceived defect rates. By aligning time measurement with actual development effort, ADM
improves sensitivity, reduces noise, and strengthens the reliability of early predictions. The
normalization by working-day time is analogous to the execution time model [8].

The experimental results demonstrate that ADM'’s segmented modeling approach provides
stable and responsive defect trend prediction even under sparse, short-window data conditions
typical of small agile projects. The figures show that ADM captures both early-stage volatility
and later stabilization, enabling meaningful predictions before traditional methods become
effective. A key observation is the strong sensitivity of prediction accuracy to data
normalization. Figures 4—6 illustrate that removing non-working days significantly improves
trend clarity and early-phase prediction stability. This confirms that defect rates based on
effective working days provide a more accurate representation of engineering activity,
particularly for small teams generating low daily defect volumes. From an engineering
perspective, these results indicate that lightweight, window-based predictive analytics can
support actionable quality management without requiring large defect datasets or long test
phases. ADM enables early detection of abnormal trends, supports continuous calibration of
development effort, and provides a practical foundation for proactive corrective actions within
agile and CI/CD workflows.

4. Conclusion and Future Work

This paper introduces ADM, a lightweight quality-intelligence module designed to support
small, agile, and CI/CD software teams through segmented, window-based defect modeling. The
presented methodology demonstrates that meaningful prediction and early-risk visibility can be
achieved even under sparse data conditions, where traditional reliability and defect models
typically underperform. The experimental results confirm that ADM can stabilize early
predictions, capture evolving defect trends, and provide actionable insight without imposing
heavy process or data-collection overhead.

Future work will focus on expanding ADM’s modeling depth and operational integration.
Planned directions include incorporating severity-aware and component-level modeling,
adaptive window selection, and automated calibration of inflection points. Additional validation
across multiple industrial projects is also scheduled to quantify prediction accuracy, robustness,
and decision impact. Longer-term research will explore integrating ADM outputs with
corrective-action optimization and Al-assisted development analytics further to enhance
proactive quality management in fast-cycle software environments.

Acknowledgement

The author gratefully acknowledges Rashid Mijumbi, Joseph Good, Mike Okumoto, and Ezra
Redeatu for their valuable contributions to this paper.

References

[1] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation. Boston, MA, USA: Addison-Wesley Professional, 2010.

[2] N. Forsgren, J. Humble, and G. Kim, Accelerate: The Science of Lean Software and DevOps:
Building and Scaling High-Performing Technology Organizations. Portland, OR, USA: IT
Revolution Press, 2018.

[3] J. Highsmith, Agile Project Management: Creating Innovative Products, 2nd ed. Boston, MA,
USA: Addison-Wesley Professional, 2009.

[4] Z. Jelinski and P. Moranda, “Software reliability research,” in Statistical Computer
Performance Evaluation, W. H. Freiberger, Ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 1972, pp.
465-484.

[5] L. H. Schick and C. Wolverton, “An investigation of software reliability and associated
metrics,” IBM Journal of Research and Development, vol. 20, no. 3, pp. 308—-326, May 1976.

[6] A. R. Goel and K. Okumoto, “Time-dependent error detection rate model for software
reliability and other performance measures,” IEEE Transactions on Reliability, vol. R-28, no. 3,
pp. 206-211, Aug. 1979.

[7] S. Yamada and S. Osaki, “Software reliability growth modeling: Models and applications,”
IEEE Transactions on Software Engineering, vol. SE-11, no. 12, pp. 1431-1437, Dec. 1985.

[8] J. D. Musa and K. Okumoto, “A logarithmic Poisson execution time model for software
reliability measurement,” in Proceedings of the 7th International Conference on Software
Reliability Engineering (ISSRE), Washington, DC, USA, 1986, pp. 126—-132.

[9] H. Pham, Software Reliability. Springer Science & Business Media, 2000.

[10] M. Jain, T. Manjula, and T. R. Gulati, “Software Reliability Growth Model with Imperfect
Debugging, Fault Reduction Factor and Multiple Change Point,” in Advances in Intelligent and
Soft Computing, Springer, 2011, pp. 1027-1037.

[11] M. Anjum, A. N. Ahmad, and A. Asraf, “Analysis and ranking of software reliability growth
models using multi-criteria decision making,” International Journal of Information Technology
and Computer Science, vol. 5, no. 2, pp. 1-13, 2013.

[12] H. Okamura and T. Dohi, “SRATS: Software Reliability Assessment Tool on Spreadsheet,”
Research Report, 2016.

[13] V. Nagaraju, V. Shekar, J. Steakelum, M. Luperon, Y. Shi, and L. Fiondella, “Practical software
reliability engineering with the Software Failure and Reliability Assessment Tool (SFRAT),”
SoftwareX, vol. 10, 100357, 2019.

[14] N. A. AL-Saati and M. Abd-AlKareem, “Selecting Best Software Reliability Growth Models: A
Social Spider Algorithm-based Approach,” arXiv preprint arXiv:2001.09924, 2020.

[15] T. Kim, D. Ryu, and J. Baik, “Deep Synthetic Cross-Project Approaches for Software
Reliability Growth Modeling (DSC-SRGM),” arXiv preprint arXiv:2509.16939, Sep. 2025.

[16] K. Okumoto, “Digital Transformation in Software Quality Assurance,” in Analytics Modeling
in Reliability and Machine Learning and Its Applications, H. Pham, Ed. Cham, Switzerland:
Springer, 2025, pp. 237-265.

[17] K. Okumoto, “Digital Engineering-Driven Software Quality Assurance-as-a-Service,” in Proc.
28th Int. Symp. on Reliability and Quality in Design (ISSAT RQD), San Francisco, CA, USA, Aug.
2023.

[18] K. Okumoto, “Early Software Defect Prediction: Right-Shifting Software Effort Data into a
Defect Curve,” in Proc. 2022 IEEE Int. Symp. on Software Reliability Engineering Workshops
(ISSREW), Charlotte, NC, USA, Oct. 2022, pp. 43—48.

[19] K. Okumoto and H. Pham, “FUSION: A Cloud-Based Framework for Integrated Software-
Hardware Reliability Assessment Using Advanced Analytics and RBDs,” in Proc. 30th Int. Symp.
on Reliability and Quality in Design (ISSAT RQD), Honolulu, HI, USA, Aug. 2025.

Cumulative Defect Arrival @ Defect Arrival Prediction @

55 - (2]
5 -
45 -
3 =
35 -
3-
25 -
2-
15 —
1
05 -

60 -

Defects
o
(&
Defects

i |
1
1
L‘M__
0 o

1 1] I i 1 i i i i i] 1 i i 1]] i] 1
5 10 15 20 25 30 35 40 45 50 55 60 65 5 10 15 20 25 30 35 40 45 50 55 60 65
Interval (2 days) Interval (2 days)

Arrival (Actual) Arrival (Predicted) Arrival (Actual) Arrival (Predicted)

Fig. 1. ADM predictions of defect detection curves for a small agile project.

Cumulative Defect Prediction @ Open Defect Prediction

Defects

Defects

5 10 15 20 25 30 35 40 45 50 55 60 65
Interval (2 days) Interval (2 days)

Closure (Predicted) Open (Actual) Open (Predicted)

Arrival (Predicted) Closure (Actual)

Arrival (Actual)

Fig. 2. ADM predictions of defect detection and fix curves for a small agile project.

Predicted defects at D0 @

Defects

65

I I I I

35 40 45 50 55 60
Interval (2 days)

Arrival (Predicted) Predicted @ D0 Target +10% Limit -10% Limit

Arrival (Actual)

Fig. 3. Prediction stability of the defect detection curve for a small agile project.

Cumulative Defect Arrival 0 Defect Arrival Prediction 0

e 70- (eo] 2
o |53
N S A O O e S 2
¢ - =TT T
o |_ e [a]

50 -

40 -

I 1 T

35 40 45

5 10 15 20 25 30 35 40 45

Interval (2 days) Interval (2 days)

Arrival (Actual) Arrival (Predicted)

Arrival (Actual) Arrival (Predicted)

Fig. 4. ADM predictions of the defect detection curve for a small agile project based on working

days.

Cumulative Defect Prediction @@ Open Defect Prediction @

60 - /
|

16 -

Defects

14 -

Defects

50 -

30 35 40 45 5 10 15 20 25 30 35 40 45

Interval (2 days) Interval (2 days)

Open (Actual) Open (Predicted)

Arrival (Actual) ~ Arrival (Predicted) ~ Closure (Actual) ~ Closure (Predicted)

Fig. 5. ADM predictions of defect detection and fix curves for a small agile project based on

working days.

Predicted defects at DO @

70 - (o9)

Defects

25 30 35 40 45 50 55
Interval (2 days)

Arrival (Actual) Arrival (Predicted) Predicted @ D0 Target +10% Limit -10% Limit

Fig. 6. Prediction stability of the defect detection curve for a small agile project based on

working days.

