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Abstract Imagine a world where software quality assurance is effortlessly managed
using a single digital tool, eliminating the need for complex models and technical
expertise. Despite numerous software reliability models developed over the years,
practical applications remain challenging. Enter STAR, a revolutionary digital en-
gineering tool offering zero-touch automation, advanced analytics, and intuitive
visualizations on a cloud-based SaaS platform. STAR’s innovative approach utilizes
multiple curves, overcoming challenges posed by traditional models. This chapter
delves into STAR’s unique features, system architecture, and practical applications
through real-world examples, showcasing its effectiveness in software quality assur-
ance.

1 Introduction

1.1 Digital transformation

Software-as a service (or SaaS) is a way of delivering applications over the Inter-
net as a service. Instead of installing and maintaining software, you simply access
it via the Internet, freeing yourself from complex software management. SaaS has
become a common delivery model for many business applications [1-2]. Picture a
world where professionals no longer maintain numerous cumbersome spreadsheets
for each release and project. Imagine a scenario where data from defect logging sys-
tems is effortlessly gathered, cleaned, and transformed into insightful analytics on
software reliability. Envision an environment where quality assurance managers and
decision-makers continuously monitor a broad array of software reliability metrics
to make well-informed launch decisions. Envisage a state where software reliability
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is analyzed using a single digital tool, eliminating the need for technical experts to
create complex models. In this world, anyone can create hypothetical scenarios to
aid in launch decision-making. The successful commercialization of this technology
promises a world where launch decisions rely on precision and foresight. The soft-
ware reliability market landscape is on the brink of transformative change, offering
a compelling opportunity for innovation.

1.2 Software development process with defect find-fix process

The software release incorporates new features or functionalities developed through
a structured development process that includes requirement specifications, software
design, coding, and testing. Fig 1 illustrates the different stages of the software
lifecycle. After the testing phase concludes, the software undergoes acceptance
testing at a customer site before being deployed for commercial use. Internal testers
and customers identify software defects, also known as faults or bugs, during this
process. The software’s quality improves as defects are discovered and resolved
throughout internal and customer tests and operations. Due to the overlapping nature
of these steps, the development team typically addresses fixes for defects found in
internal tests and customer evaluations after the initial delivery to the customer site.
However, defects may still emerge during the operational phase after commercial
deployment, some of which can lead to system outages or failures in the field.

1.3 Challenges in software reliability modeling

The challenges faced by engineering teams in evaluating software quality and making
release decisions are multifaceted, primarily due to the constraints imposed by
predefined delivery deadlines. One of the pivotal tasks in this context is predicting
the remaining defects in software at a future date and comprehending how these
defects might impact the overall program. To address this, various methods have
been developed over the years, with software reliability growth models (SRGMs)
being at the forefront. These models work by analyzing defect trends, essentially
creating a cumulative defect arrival curve.

Despite the extensive development of more than 220 SRGMs [3-16] since the
1970s, their effective application in practical scenarios remains an unresolved chal-
lenge. One of the significant hurdles is the limited access to real project data, making
it difficult to validate these models against actual software development situations.
Additionally, there is a heavy reliance on specialist knowledge, which further ham-
pers the practical implementation of these models.

Currently, experts in the field resort to using custom spreadsheets for their analy-
ses. While this approach allows for flexibility, it gives rise to inconsistent outputs and
creates challenges in collaboration and maintenance across different teams within an
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Fig. 1: A sample software lifwe cycle with defect injection and find-fix processes

organization. Moreover, existing models predominantly focus on defects identified
during the testing phase, neglecting the broader spectrum of issues that might arise
in different stages of software development.

A common approach employed by these models is using single complex curves,
such as exponential and S-shaped models, for example, Weibull, gamma, and logis-
tic, to describe the entire defect trend. This method, known as defect trend analysis,
simplifies the intricate nature of software defects into overarching patterns. How-
ever, the challenge lies in determining the predictability of these models. While
goodness-of-fit metrics are utilized to compare different models, they often fall short
in addressing the models’ ability to predict future defects accurately.

In essence, the current state of evaluating software quality and making release
decisions is marred by a lack of comprehensive, practical, and predictive models.
The challenges emanate from limited access to real project data, the reliance on
specialized knowledge, and the use of oversimplified models. Addressing these
issues is imperative for engineering teams to enhance the accuracy of software
quality evaluations, meet delivery deadlines, and ultimately ensure the success of
their software development endeavors.

To enhance their practical applicability, SRGMs should be capable of addressing
common inquiries in the realm of software quality assurance.

• Use Case #1: Will we find enough defects?
• Use Case #2: Will we fix enough defects?
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• Use Case #3: Will we be ready for delivery on time with acceptable quality?
• Use Case #4: What if we don’t have defect data early in development? How

can we make early quality estimates?
• Use Case #5: What can we do to improve the software quality? And what if

we increased the number of developers or delayed the delivery?
• Use Case #6: When can we start using the prediction? Are predicted values

stable and accurate?
• Use Case #7: Which of our software components exhibits the highest defect

rate?

1.4 A revolutionary approach to software quality assurance

Recently, a novel data-driven method was devised [17 - 20] to create multiple curves,
enabling the development of a series of piece-wise exponential models. Considering
that not all software components are accessible at the commencement of the testing
phase, it is logical to examine the defect trends for each period within this phase as
new components become available. An exponential model has been proven effective
during phases of content stability, such as system testing.

In this chapter, we present a groundbreaking tool for software quality assurance
known as STAR. Sect.2 will delve into specific aspects of STAR, providing an
overview, detailing its system architecture, and outlining the input data utilized.
The innovative predictive analytics integrated into the core engine of STAR will be
elucidated in Sect.3. Furthermore, Sect.4 will showcase STAR’s efficacy through
various use cases based on the frequently asked questions mentioned in Sect.1.3,
illustrating its practical application in software quality assurance. Through these
examples, you will gain insight into how STAR surmounts existing challenges in this
domain.

2 Understanding STAR

2.1 STAR Overview

STAR stands out as a digital engineering tool, as illustrated in Fig 2. It provides a
cloud-based service featuring zero-touch automation, cutting-edge analytics, user-
friendly visualizations, and interactive what-if scenarios on a Software as a Service
(SaaS) platform. Specifically designed for reliability practitioners and bottleneck
detectives, STAR revolutionizes data-driven software reliability analysis. The tool’s
exceptional data-driven analytics have been validated through empirical demonstra-
tions using diverse datasets, underscoring its effectiveness.
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Fig. 2: STAR:A digital engineering tool for software quality assurance.

By adopting the SaaS model, STAR offers users seamless online access, elim-
inating the need for cumbersome software downloads and ensuring a streamlined
user experience. We aim to democratize advanced analytics; automation reduces
dependence on domain experts, making invaluable insights accessible to a broader
audience. Intelligent visualization capabilities effortlessly transform complex data
outputs into understandable formats, expediting decision-making processes.

The earlier version [17-18] of the STAR core engine has gone through prototype,
proof of concept, trial, and productization. The algorithm has been redesigned and
enhanced with additional features. A new tool [19-20] with an improved core engine
was developed on an AWS platform with a simplified user interface and visualization.
It’s made available for public use.

2.2 Architecture

STAR streamlines the entire process, encompassing input data extraction, pre-
processing, core analytics, and post-processing. Fig 3 illustrates the high-level ar-
chitecture of STAR, built on the AWS platform. To gather data from various defect
logging tools, STAR utilizes application programming interfaces (such as Flask) and
stores this data in a unified format in two databases: PostgreSQL and NoSQL (Dy-
namoDB), enhancing overall performance. Before being stored, this data undergoes
pre-processing. Pre-processing entails aggregating the data into weekly or specified
time frames and preparing the necessary input for the core engine, which conducts
predictions.
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Fig. 3: STAR system architecture.

One crucial aspect of pre-processing is ensuring data consistency across projects
and within a project, from one release to another. For instance, pre-processing may
involve:

• Standardizing database field and value mappings, as different projects or
databases might use different field names for the same properties (e.g., priority
vs. severity).

• Mapping certain field values to specific values, such as assigning a defect to a
geographic location instead of an organizational unit.

• Checking defect properties to identify duplicates or those from other releases,
aiding in quality assessment and project management.

The core engine is developed using the Python Scientific Stack, while the user in-
terface is built on JavaScript ES6 (React). Terraform AWS serves as the infrastructure
as code (IaC) for the system.

2.3 Input data

STAR provides an intuitive menu-driven interface. To navigate to the release con-
figuration page, click on ‘User Inputs’ and then select ‘Release Config,’ as shown
in Fig4. This page is divided into two sections: release parameters and defect data
uploading. In the release parameters section, you are required to input milestone
dates (start date, D1 (delivery for trial), and D2 (delivery for deployment) dates).
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Fig. 4: STAR input data page.

Fig. 5: STAR template for defect data.

For defect data uploading, click on the ‘Download Sample Defects’ link to access
a template, demonstrated in Fig 5. After creating your data file in CSV format and
following the provided instructions, use the ‘CHOOSE CSV FILE’ box to select and
upload your file. By clicking the ‘UPLOAD DEFECTS’ box, the upload process will
commence, and STAR will display your actual data below the box for your review.
The same process applies to effort data.
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2.4 Demo data

The defect and effort datasets have been created leveraging more than 50 years of
experience gained from real-world projects. Predictions for defect arrival, closure,
and open defect data will be generated based on proprietary analytical models. The
use of cutting-edge visualization tools ensures that interpreting STAR results is
effortless. STAR offers a straightforward and user-friendly interface, simplifying the
overall user experience.

The dataset comprises four distinct sets of project data, labeled as Projects A to D,
each containing multiple releases. These projects vary widely in size, ranging from
small to large, and exhibit diverse patterns in defect trends. These datasets will be
used to illustrate the effectiveness of automated defect prediction across all scenarios.
Importantly, users will not need to make any parameter adjustments, emphasizing
the simplicity of the process.

3 Core engine

In this section, we will outline three fundamental techniques employed by the STAR
core engine for predicting defect arrival and closure, showcasing its innovative
analytics in the realm of defect prediction.

3.1 Piece-wise exponential models

3.1.1 An exponential NHPP model and the maximum likelihood estimates

Several methods, as detailed in Sect.1, have been investigated, predominantly
based on single-curve models. The majority of SRGM models hinge on the Non-
Homogeneous Poisson Process (NHPP) concept [15]. To comprehend an NHPP
model, envision a limited number of defects, say a. Each defect is identified at time,
t, following a cumulative distribution function, F(t). For the defect detection process,
N(t), the likelihood of discovering n defects by time t is commonly expressed as a
binomial distribution, as depicted in equation (1).

𝑃{𝑁 (𝑡) = 𝑛} =
(
𝑎

𝑛

)
𝐹 (𝑡)𝑛{1 − 𝐹 (𝑡)}𝑎−𝑛 (1)

In practice, the value of a is large, and therefore, we can approximate (1) by a
Poisson distribution with the mean value function, m(t), as given in (2).

𝑃{𝑁 (𝑡) = 𝑛} = 𝑚(𝑡)𝑛 exp{−𝑚(𝑡)}/𝑛! (2)
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This NHPP is a generalized version, indicating that incremental defect data,
like weekly defects, conform to a Poisson distribution with a defined mean value
function aligned with the interval. Subsequently, we can create the likelihood function
for statistical parameter estimation. It’s important to recognize that 𝑚(𝑡) = 𝑎𝐹 (𝑡)
signifies the average count of defects detected by time 𝑡.

To illustrate, an exponential model can be characterized as an NHPP with the
following mean value function:

𝑚(𝑡) = 𝑎{1 − exp(−𝑏𝑡)} (3)

If 𝑏 > 0, 𝑚(𝑡) stabilizes exponentially, converging towards 𝑎 > 0. When 𝑏 → 0
and 𝑎 → ∞, 𝑚(𝑡) becomes a linear function, representing a stationary Poisson
process. Conversely, if 𝑏 < 0 and 𝑎 < 0, 𝑚(𝑡) values increase exponentially. While
b is mostly greater than 0, there are instances where 𝑏 → 0 during site test and in-
service periods and 𝑏 < 0 in early test phases. It’s worth noting that the fundamental
assumption of a finite number of defects is violated when 𝑏 = 0 or 𝑏 < 0. However,
these cases prove useful in explaining diverse trends during individual test periods
within the same release.

The NHPP assumption is employed to apply the statistical method of maximum
likelihood for estimating model parameters 𝑎 and 𝑏, as described below.

The maximum likelihood method is a widely used statistical approach for esti-
mating the parameters 𝑎 and 𝑏 for a given set of defect data. Typically, the data set is
represented as(𝑥𝑖 , 𝑦𝑖), where 𝑦𝑖 (𝑖 = 0, . . . , 𝑝) denotes the number of defects found
in the interval (𝑥0, 𝑥𝑖). Maximum likelihood estimates for 𝑎 and 𝑏 are selected to
maximize the likelihood function and obtained by solving nonlinear equations as
outlined below. It is important to note that we use the term ‘estimates’ when parame-
ter values are derived from actual data, while the term ‘prediction’ is used to address
future values based on current data and other sources. The likelihood function for 𝑎
and 𝑏 is derived from (2) as follows:

𝐿 (𝑎, 𝑏; 𝑦1, . . . , 𝑦𝑝) =
𝑝∏
𝑖=1

𝑚(𝑥𝑖 − 𝑥𝑖−1)𝑦𝑖−𝑦𝑖−1 exp{−𝑚(𝑥𝑖 − 𝑥𝑖−1)}/(𝑦𝑖 − 𝑦𝑖−1)! (4)

Following some algebraic manipulation involving the partial derivatives of the
log-likelihood function (4) with respect to a and b and setting to zeros, we obtain the
subsequent pair of equations:

𝑎 =
𝑦𝑝

1 − exp(−𝑏𝑥𝑝)
(5)

𝑝∑︁
𝑖=1

𝐴𝑖

𝐵𝑖

− 𝐶 = 0 (6)

where the values of 𝐴𝑖 , 𝐵𝑖 , and 𝐶 are determined as follows:
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Fig. 6: An illustration of the construction process for generating a series of piece-
wise exponential curves with inflection points

𝐴𝑖 = (𝑦𝑖 − 𝑦𝑖−1){𝑥𝑖 exp(−𝑏𝑥𝑖) − 𝑥𝑖−1 exp(−𝑏𝑥𝑖−1)} (7)
𝐵𝑖 = exp(−𝑏𝑥𝑖−1) − exp(−𝑏𝑥𝑖) (8)

𝐶 =
𝑥𝑝𝑦𝑝

exp(𝑏𝑥𝑝) − 1
. (9)

To obtain the maximum likelihood estimates of 𝑎 and 𝑏, equations (5) and (6)
can be solved numerically. We have developed an algorithm in STAR capable of
automatically solving these equations. It’s important to note that a predicted curve
derived from the maximum likelihood estimates of 𝑎 and 𝑏 always intersects the
initial data point (𝑥0, 𝑦0) and the final data point (𝑥𝑝 , 𝑦𝑝). In the next section, we
will employ this estimation method to generate multiple exponential curves.

3.1.2 A piece-wise exponential model

Now, we will introduce a multi-curve methodology, particularly focusing on employ-
ing multiple exponential curves, each representing distinct stages of the development
process, as illustrated in Fig 6, 𝑛(𝑡) = 𝑚(𝑡 − 𝛼).

The underlying concept here is that not all features are available for testing at
once; instead, subsets become accessible gradually over time. Consequently, this
approach results in multiple waves of defects emerging during the testing phase.
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Fig. 7: A final defect arrival curve using the multiple curve approach

Fig. 8: Closure prediction from arrival predicted curve

An algorithm [19] has been developed to automatically identify inflection points,
indicating significant shifts in trends, and apply a statistical parameter estimation
technique. The outcome is an exceptionally accurate fit for the data, as depicted in
Fig 7. Using a single curve approach would not suffice for conducting the defect trend
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analysis. Advancements in computing technology have facilitated the computation
of intricate data.

Mathematically, the resulting piece-wise exponential curve is represented as fol-
lows: For period 𝑖, we have

𝑚𝑖 (𝑡) = 𝑎𝑖{1 − exp[−𝑏𝑖 (𝑡 − 𝑡𝑖−1)]} + 𝑚𝑖−1 (𝑡𝑖−1) for 𝑡𝑖−1 < 𝑡 < 𝑡𝑖 (10)

It’s important to note that 𝑚𝑖 (𝑡) signifies the cumulative defects detected by time
𝑡, situated between the two inflection points, 𝑡𝑖−1, and 𝑡𝑖 , where 𝑡 falls within this
time frame. The parameters 𝑎𝑖 , and 𝑏𝑖 represent the total defects and defect rate,
respectively, for period 𝑖. These values can be determined utilizing the statistical
method of maximum likelihood discussed in Sect.3.1.1.

Furthermore, this algorithm offers flexibility to accommodate various sizes and
patterns of defect data. Fig 8 demonstrates the algorithm’s adaptability in four distinct
scenarios, where the actual and predicted arrival curves are indicated in red. The
green curves represent actual defect closure data with solid lines and predicted
closure curves with dashed lines. The closure prediction method will be discussed
in the upcoming section.

3.2 Closure curve prediction

The input data comprises the leading predicted arrival curve and the actual closure
data, as illustrated in Fig 9. Through thorough analysis of extensive project data, we
have established that the predicted closure curve can be generated by shifting the
leading data to the right. If we represent the cumulative predicted arrival curve over
time 𝑡 by 𝑚(𝑡), the cumulative closure predicted curve, 𝑛(𝑡), is derived by shifting
𝑚(𝑡) by a constant value 𝛼, in the following manner:

𝑛(𝑡) = 𝑚(𝑡 − 𝛼) (11)

To achieve the most accurate fitting curve, multiple real closure data points are
utilized. The default setting for this analysis is 2, meaning that the last 2 data points
are taken into account. In this particular instance, through numerical calculations, we
determined the optimal value for 𝛼 to be 2.3. This value was obtained to minimize
the sum of squares of differences between the predicted curve and the actual closure
data points. In this example, the closure prediction is achieved by shifting the arrival
curve by 2.3 weeks. Fig 9 showcases the predicted closure curve alongside the actual
data, visually confirming the accuracy of the algorithm.
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Fig. 9: Closure prediction from arrival predicted curve

3.3 Defect open curve prediction

In practical situations, one of the key metrics is the count of open defects, commonly
referred to as backlog defects. This metric signifies defects that are yet to be resolved
or fixed. Ideally, all identified defects should be rectified before the software is
delivered. The open defect curve can be derived by computing the difference between
the arrival curve and the closure curve, expressed as:

𝑜(𝑡) = 𝑚(𝑡) − 𝑛(𝑡). (12)

Utilizing the dataset discussed in this section, we calculated the open defect curves
for both actual and predicted values using equation (12). Fig 10 demonstrates the
close alignment between the actual data and the predicted curve.

3.4 Early defect prediction

Conventional SRGMs, as discussed in Sect.3.1, rely on defect data collected during
the software testing phase. This limitation poses significant challenges, especially in
the early stages of software development when crucial decisions like staffing levels,
required testing efforts, or focus on specific features must be made. These decisions
are not only important but also time-consuming. With the industry trend shifting
towards extremely short software development cycles, as seen in agile development,
making accurate decisions early in the development phase is critical.

Especially in the initial planning phase, projects often require insights into how
the defect-finding curve might appear during internal testing. This understanding
is vital for determining the necessary staffing levels for development and testing
activities. Consequently, predicting defects early in the software development pro-
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Fig. 10: Defect open predicted curve

cess becomes essential. This early prediction, referred to as early defect prediction,
holds significant value, particularly when actual defect data is unavailable. It aids
in identifying software quality issues, preventing cost overruns, and establishing an
optimal development strategy.

3.4.1 Input data

We are introducing the concept of leading data to enhance early defect prediction.
In recent years, we explored potential leading data based on its availability and
correlation with defects. Our research led us to identify effort data, specifically in
two forms (development and test), as the most suitable for this purpose. During the
planning phase, these two types of effort data are easily accessible and are typically
measured in hours required for completing specific development activities, often at
a sub-feature level.

• Development effort data: This data indicates the complexity of the software
content. The development effort curve demonstrates how the content evolves
over time and is crucial in predicting the number of defects.

• Test effort data: This data illustrates testing progress when cumulative test
effort is standardized. The rate at which defects are detected is closely linked
to the test progress. Essentially, the shape of the defect discovery curve mirrors
the test progress curve.
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Fig. 11: Effort data: Development, test, normalized development

Fig 11 presents a depiction of standard cumulative development and test effort
data. It’s crucial to observe the notable disparity between the development and test
effort curves. In extensive development projects, integrating numerous low-level
modules is necessary for a feature to be prepared for testing. Defects are typically
identified during feature-level tests, underscoring the discrepancies between devel-
opment and test efforts.

3.4.2 Preprocessing effort data

Initially, effort data suitable for the prediction algorithm is prepared by merging
development and test efforts to create the leading data.

• Normalizing development effort data by test progress:

Development effort data is normalized by the test progress, calculated as the
test effort curve divided by the maximum value of the test effort data. This
normalized development effort curve illustrates how the software content is
tested over time (shown in Fig 11).

• Adjusting the tail end of the normalized development effort curve:
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Fig. 12: Normalized development effort curve with the adjustment

Modification of the tail end of the normalized curve becomes necessary due
to its rapid flattening trend. This occurs because the test effort covers internal
testing activities, while defect data usually includes issues identified during
customer testing and operation. To accommodate customer-related defects, an
adjustment is made, utilizing the trend analysis algorithm detailed in Sect.3.1.1.

• Calculation of defect density:

Defect densities at 𝐷1 and 𝐷2 are computed using the defect curve and the
adjusted normalized effort curve. Utilizing an interpolation technique, values
at 𝐷1 and 𝐷2 are determined. Defect density is then calculated as defects over
effort hours. Fig 12 illustrates the adjusted normalized effort curve overlaid
with the defect arrival curve, emphasizing the close association between the
defect and effort curves.

• Target defect values at the delivery date:

The same procedure is applied to the effort data from the current release to
establish the adjusted normal development effort curve. Using the calculated
defect densities, target defects at 𝐷1 and 𝐷2 for the ongoing release are deter-
mined by multiplying defect density with the effort hours of the current release.
This results in our input data, comprising the effort curve and the target defects
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Fig. 13: Target defects vs. adjusted normalized development effort curve

at 𝐷1 and 𝐷2, as depicted in Fig 13

3.4.3 Transformation Algorithm for Early Defect Prediction

The transformation function consists of two elements: horizontal and vertical shifts.
In simpler terms, the original curve, referred to as the effort curve, undergoes a
transformation involving both horizontal and vertical shifts to closely match the target
defects at 𝐷1 and 𝐷2. The transformation function, which maps (𝑥, 𝑦) coordinates
to (𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤) is detailed in equation (13) for horizontal and vertical shifts as
respectively,

𝑥𝑛𝑒𝑤 = 𝛼 + 𝛽𝑥, 𝑦𝑛𝑒𝑤 = 𝛾𝑦. (13)

The parameter 𝛼 signifies a fixed delay in weeks from the effort curve to the defect
curve, while 𝛽 represents an additional delay in the defect curve. The parameter 𝛾 is
determined as the ratio of defects to effort hours, indicating defects per effort hour.
This problem involves non-linear optimization with three variables (or parameters)
and aims to minimize the total distance between predicted defects and target defects at
𝐷1 and 𝐷2 using two data points. Solving this problem requires iterative numerical
analysis involving three-level loops and multiple iterations for each level. Initial
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Fig. 14: Early defect prediction with actual defects overlaid

values, increments, and maximum iteration counts must be defined for each level.
It’s important to note that the defect closure prediction discussed in Sect.3.2 is a
particular case where 𝛽 = 1 and 𝛾 = 1.

Fig 14 showcases the ultimate defect arrival curve, which is expected to closely
match the target defects at D1 and D2. To validate the early defect prediction, actual
defect data can be superimposed, as shown in the same figure.

4 Use cases showcasing the capabilities of STAR’s core engine

We will now explore various commonly asked questions by employing the techniques
implemented in STAR’s core engine, as detailed in Sect.3.
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4.1 Use Case #1: Will we find enough defects?

We normalize residual defects by the total number of defects, making this metric
applicable to a wide range of projects. The definition is as follows:

% Residual Defects =
Total defects − Defects found

Total defects
(14)

This metric evaluates the probability of detecting an adequate number of defects. Our
recommended threshold values, derived from practical experience, are as follows:
It is deemed acceptable (green) if it’s less than or equal to 15%, at risk (red) if it
exceeds 25%, and a cautionary zone (yellow) for values falling in between.

STAR autonomously generates an arrival curve using the techniques outlined in
Sect.3 and computes the percentage of residual defects. The resulting visualization
is presented in Fig 15. The upper table displays the defect counts at significant mile-
stones for the arrival, closure, and open curves. Specifically, the defect counts linked
to the arrival curve will be employed to compute the percentage of residual defects
at D1 and D2, as per equation (14). The outcomes are presented in the table located
in the middle left section.

4.2 Use Case #2: Will we fix enough defects?

Open defects are standardized by the total number of defects discovered, represented
as:

% Open defects =
Defects found − Defects fixed

Defects found
(15)

This metric assesses if a sufficient number of defects will be resolved. Based on
practical experience, our suggested threshold values are as follows: It is considered
acceptable (green) if it’s less than or equal to 5%, at risk (red) if it exceeds 10%,
and a cautionary zone (yellow) for values falling in between. STAR autonomously
generates an open curve using the techniques outlined in Sect.3 and computes the
percentage of open defects. The resulting visualization is presented in Fig 15. The
defect counts linked to the arrival and closure curves in the upper table will be
employed to compute the percentage of open defects at 𝐷1 and𝐷2, as per equation
(15). The outcomes are presented in the table located in the middle right section.
The 90% lower and upper confidence limits are also added to the chart.
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Fig. 15: Percentages of residual and open defects

4.3 Use Case #3: Will we be ready for delivery on time with acceptable
quality?

By incorporating the quality metrics discussed in Sects.4.1 and 4.2, we are now
equipped to make well-informed decisions about the software release’s prepared-
ness. The color-coding scheme of green, yellow, and red corresponds to ‘Acceptable,’
‘Warning,’ and ‘At risk,’ respectively. In this instance, we conclude that the release
will be ready for deployment according to the desired quality at D2 (Delivery for
Deployment) but not at D1 (Delivery for Trial). Table 1 provides an example of
software release readiness metrics.

4.4 Use Case #4: What if we don’t have defect data early in
development? How can we make early quality estimates?

The dataset from Project D is employed to showcase early defect prediction for Re-
lease B, utilizing defect and effort data from the preceding release, Release A. As
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Table 1: A sampe of key quality metrics for the release realines evaluation

Fig. 16: Percentages of residual and open defects

explained in Sect.3.4, STAR utilizes an innovative method to transform the effort data
(as leading data) into a defect curve. Fig 16 illustrates the effort curve transformed
into the predicted curve, which aligns with the target values at 𝐷1 and 𝐷2. This
represents an early defect prediction without actual defect data during the planning
phase. To demonstrate this prediction, we overlaid actual defect data from Release
𝐵, depicted in Fig 17. The fit is remarkably accurate.

4.5 Use Case #5: What can we do to improve the software quality? And
what if we increased the number of developers or delayed the
delivery?

A common question in software quality assurance is: How can we improve software
quality, and to what extent can corrective measures enhance it? STAR offers real-
time quantification of the quality impact of corrective actions. We demonstrate this
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Fig. 17: Percentages of residual and open defects

Fig. 18: A sample output of the STAR corrective actions page

interactive approach for commonly employed corrective actions: 1) Delaying the
delivery, 2) Increasing the number of developers, 3) Expanding the team of testers,
and 4) Reducing the release content, i.e., decreasing the number of features. STAR
allows for various combinations of these options. In Fig 18, we present a scenario
involving two choices: ‘Increase testers by 10%’ and ‘Add 10% more developers.’
The metrics table shows updated values for % Residual and % Open at 𝐷1 and 𝐷2.
Both metrics indicate improvement. The charts display adjusted arrival, closure, and
open curves based on these options.
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Fig. 19: Prediction stability based on the multiple exponential curves method

4.6 Use Case #6: When can we start using the prediction? Are
predicted values stable and accurate?

Many SRGMs employ goodness-of-fit as a measure for model validation. However,
it is crucial to assess the stability and accuracy of predictions in real-world appli-
cations. We iterate the process outlined in Sect.3.1 as fresh weekly data becomes
available. Every week, we track the projected defects at the delivery date, 𝐷2. The
results summary, shown in Fig 19, includes the average predicted defects at 𝐷2 with
+/- 10% margins. Despite near-perfect goodness-of-fit, the prediction’s stability re-
mains questionable. Typically, stability is achieved several weeks before the delivery
date, aligning with the start of system testing. During this period, the trend analysis
results cannot be fully relied upon for decision-making.

We’ve introduced an additional feature to the early defect prediction model, in-
corporating actual defect data as it becomes accessible. This inclusion provides
prediction stability data, as depicted in Fig 20. This data exhibits a remarkably con-
sistent trend from the early stages of the test phase, maintaining accuracy within the
range of less than +/- 10%. This suggests that early defect prediction not only offers a
highly stable and precise forecast but also demonstrates exceptional goodness-of-fit,
extending up to the current week. This emphasizes the effectiveness of utilizing
development and test effort data along with data from previous releases, enhancing
both prediction stability and accuracy.

It’s crucial to note that many studies comparing SRGMs often rely solely on
goodness-of-fit, which may not be a fair comparison criterion due to the dynamic
nature of the defect detection process over time.
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Fig. 20: An early defect prediction model with actual defect data

Fig. 21: Defect breakdown by component

4.7 Which of our software components exhibits the highest defect rate?

Examining the breakdown of the defect trend by component helps identify prob-
lematic components while analyzing the breakdown by severity focuses attention on
critical and major defects. Refer to Fig 21 for an example output illustrating defects
categorized by component.
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Fig. 22: Defect breakdown by component

The defect filters allow users to select specific components and severity levels,
showcasing the versatility of automatic prediction. Fig 22 illustrates these defect fil-
ters, and additional customization options, including component and severity filters,
cater to a broad audience, ranging from developers to executives. It’s essential to
note that the defect filter was utilized to create the specific visualization shown in
Fig 8 in Sect.3.1.

This functionality also facilitates exploring detailed breakdowns of defects, such
as distinguishing software from hardware issues, differentiating cybersecurity from
non-cybersecurity concerns, comparing internal tests with customer tests and oper-
ations, and identifying unique faults versus duplicates or non-issues within various
application domains.

5 Conclusions

We’ve introduced a groundbreaking software quality assurance tool called STAR. It
not only addresses common concerns but also aids project managers in making well-
informed decisions about development resources and release quality. STAR offers an
intuitive interface paired with advanced visualization. Its core engine incorporates
robust statistical analytics, extensively tested with real project data, ensuring stable
and precise defect predictions. STAR utilizes a series of piece-wise exponential
models and leverages development and test effort data from previous releases for
prediction stability and accuracy. Compared to traditional single-curve fitting mod-
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els, STAR exhibits outstanding goodness of fit. As a cloud-based tool, it is accessible
anytime, anywhere, and by anyone, making it publicly available for use.
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