Digital Engineering-driven Software Quality
Assurance-as-a-Service

Kazuhira Okumoto
Sakura Software Solutions LLC
Naperville, IL USA
Email: kokumoto @sakurasoftsolutions.com

Abstract—Recent advances in technology are pushing the limits
in computation, networking, storage, and are allowing an increas-
ing number of business processes to be intelligently automated.
These advances require, in a large part, the ability to continuously
design, develop, test, integrate and deploy high quality software.
More than ever, software development teams need ways to plan
their release timelines, and to ensure that released software is
of the expected quality. While software quality assurance models
are well-studied, there remains a significant gap in translating
these models to practice. In practice, subject matter experts are
required to continuously tweak models and their parameters, and
generally perform software reliability analysis using spreadsheets.
This usually generates inconsistent and biased results. The results
are not easily shared within the software development team,
which creates a lack of communication.

In this paper, we present STAR, a novel cloud-based tool for
software quality assurance that is driven by digital engineer-
ing principles. The core engine of STAR implements a series
of piece-wise exponential models for defect trend analysis. In
addition, during early stages of projects where there is not
defect data, STAR proposes an algorithm that uses software
development effort plans from previous releases to predict defects
for a current release. Furthermore, STAR includes prescriptive
scenario planning, which allows users to run interactive what-
if scenarios and corrective actions needed to meet delivery and
quality targets. All these have been implemented in a software-as-
a-service model that allows users to create projects and releases,
and automatically obtain all the necessary quality metrics to
decide whether the release is ready for high-quality delivery.
Evaluations of the effectiveness of STAR have been performed
using data from large-scale software development projects, as
well as through collaborations with large industry and academia
partners.

Index Terms—Software reliability, digital engineering, soft-
ware quality, on-time delivery, enterprise and program decision-
making, program readiness, prescriptive data analytics, engineer-
ing practice, decision analytics, and visualization

I. INTRODUCTION

One of the biggest challenges faced by engineering teams is
evaluating software quality and using this analysis’s results for
readiness-of-release decision-making. Because most software
development projects have pre-defined delivery timelines, the
challenge involves predicting the number of defects remaining
in the software at a given future date and assessing the
impact on the overall program of which the software is
part. Methods for predicting software defects over time are
often called software reliability growth models. These methods
typically use defect trend analysis to create a cumulative defect

2023 ISSAT RQD

arrival curve and, based on the shape of the curve, apply an
appropriate statistical model to fit a curve to the actual data.

The theoretical area of software reliability growth modeling
is well studied, with over 220 models and a few tools proposed
since the 1970s [1]. Most of these models use a single complex
curve to describe an entire defect trend, called a defect trend
analysis. Goodness-of-fit is used to compare different models,
and none of them address the predictability of the models,
which is of utmost importance for practitioners. Applying
these models effectively in practice remains generally un-
solved. This is mainly because defect data from actual projects
are not readily available to researchers in the field. As a
result, some assumptions many models make (such as having
a developed and stable product) do not hold in practice.
Moreover, the models still require specialist knowledge to
apply. This is typically performed by subject matter experts
using custom spreadsheets which produce inconsistent output
and are difficult to share and maintain across teams.

This paper presents STAR!, a digital engineering tool that
transforms software engineering through a data-driven soft-
ware quality evaluation to support software release decision
processes. It is a new cloud-based, real-time tool, STAR, for
software quality assurance. The tool is aimed at practitioners
who manage software quality and make decisions based on its
readiness for delivery. Being web-based and fully automated
allows teams to collaborate on software quality analysis across
multiple stakcholders, projects, releases, and components.

Figure 1 provides a summary of the main attributes of
STAR. It enables transparency for all participants, effec-
tive management of teams, precise control of the progress,
and holistic monitoring of development results. STAR has
been modeled following the Software-as-a-service (SaaS)[2]
paradigm, which is a way of delivering applications over
the Internet—as a service. Instead of users installing and
maintaining software, they access it via the Internet, freeing
themselves from complex software and hardware management
responsibilities. SaaS has become a standard delivery model
for many business applications.

The core innovation of STAR is in its set of statistically
sound algorithms that are then used to generate a defect pre-
diction curve for the provided data. We recently developed an
innovative data-driven method [3], [4] for generating multiple

Uhttps://sakurasoftsolutions.com

SaaS Proven Automation &
Innovative Analytics

Cloud ased toof Guidance for Software

Reliability Engineering

Visualization

Several output views to
suit all users from
developers to executives

available anytime,
anywhere, to anyone!

An integration of Saa$, Proven Automation & Innovative Analytics, and Visualization for Software Quality Assurance

A forefront of Digital Engineering Practice for High-quality & On-time Software Delivery

Achieve Significant Cost Savings and Improved Customer Satisfaction

Fig. 1: STAR: Software Quality Assurance-as-a-Service

curves to construct a series of piece-wise exponential models.
Considering that not all software contents are available at the
beginning of the test phase, it makes sense to look at the
defect trend for each period during the test phase as a new
set of contents becomes available. An exponential model has
proven effective when the content is stable, e.g., in the system
test. This is achieved through the automated identification of
inflection points in the original defect data and their use in
generating piece-wise exponential models that make up the
final prediction.

STAR implements innovative ways to generate the defect
arrival/closure and open curves, expanding the software reli-
ability field beyond the defect arrival prediction. Moreover,
during the early days of software development, where no
defect data is available, STAR can use the development effort
plan to learn from defects of previous software releases to
make predictions for the current release. We developed a
breakthrough method for transforming the effort data into a
defect curve. It enables the generation of a defect arrival
curve without actual data during the planning phase. The
transformation method is also used to predict the closure curve.

Finally, the tool implements a range of what-if scenarios,
enabling practitioners to evaluate several potential actions to
correct course. We introduced an interactive method for quan-
tifying corrective actions’ quality impact, such as delaying the
delivery date, adding more developers to fix defects, adding
more testers, and reducing the release content.

STAR will enable companies with in-house or subcontract-
ing software development to achieve high-quality and on-
time software delivery. This is the first of its kind in the
field. It is available for public use. In particular, STAR can
provide answers to these and other related questions to help the
software development team deliver quality software on time:

« When will the product be ready to be delivered, and how
many defects shall we find?

« How many additional defects could we find from now to
delivery?

o Which of our software components arc most defective?

« What can we do to improve the software quality? And
what if we increased the number of developers or delayed
the delivery?

« What if we don’t have defect data early on in develop-
ment? How can we make early quality estimates?

The STAR outputs are presented in state-of-the-art visualiza-
tion in tables and charts suitable to all users, from developers
to executives.

II. RELATED WORK

Foundational SRGMs formulated the problem as a non-
homogeneous Poisson process (NHPP) [3], [5], [6]. Two main
approaches are typically used: parametric and non-parametric.
Non-parametric approaches use software characteristics (such
as size, complexity, and development effort), test metrics (such
as test cases executed and pass rate), and project milestones
as input. In these approaches, the core processing technique
is typically machine learning [7].

Parametric approaches take advantage of the dynamic nature
of defects during the test as the defect trend continues to
change due to the find-fix process. The generic name —
software reliability growth modeling (SRGM) - is derived
from this process [8]. These approaches rely on mathematical
models to capture the defect trend during the test. Due to
their data-driven approach, they require a certain amount of
data before the prediction becomes stable [9]. Most SRGMs
are, in practice, grouped into two: exponential models [9] and
S-shaped curve models [10]. Exponential models are simple
and rely on casily understood assumptions. They are based on
a statistically sound method of parameter estimation. On the
other hand, S-shaped models are intuitively understood. Their
shape reflects the integrated effects of software structure and
learning factors on the testing process. A major difference
between exponential models and S-shaped curve models is
in the early test phase. Exponential models ignore defects
from the early test phase, while S-shaped models attempt to
capture these defects. Our experience shows that capturing
early defects, even with S-shaped models, is difficult.

However, the complex nature of such curves presents chal-
lenges in attempts to establish statistical methods for esti-
mating their parameters. As a result, the curves are usually
generated manually by subject matter experts. Moreover, most
S-shaped models cannot explain an early part of defect data if
focused on the latter part of the defect data. Generally, a single
curve approach does not appear sufficient to describe the entire
defect data. Even though this has been a well-studied subject
over the last 50 years [11], it continues to be challenging
in practice. One possible solution to this is to use multiple
exponential curves for the different phases of the development
process, which is the method implemented in STAR.

BRACE [12], [3], [13], [8], [14] is a cloud-based software
reliability assurance tool that was developed and used by
software development groups at Nokia. The tool includes
models for defect prediction at various stages of the develop-
ment lifecycle. The code for the tool has been open-sourced
and has been the main motivation of the innovative work in
STAR. This paper will significantly enhance the functionality
in STAR from an automation, computational efficiency, user-
friendliness, and cybersecurity perspective.

— Actual

urve 2

2000

===Curve 4 s

Inflection Points o F e

1000

Cumulative L
A
[

500 -

Delivery

Weeks

Finding inflection points and multiple curves

« Input data
{x.3}. where ¥, (i= 0,

-, p) is the number of defects found in (xy, x;}, where (xq. ¥o) and [x,,, 3,,) represents the

start week and the end week of the entire defect data, respectively.

* Procedure

/i Start the loop at {x_, 3.} to the end week

Fori=x,t0.x,
ifi>=x,+3 then

/{ iis-an index for the current week upto the end week
/f minimum number of data points = 3

J/ Find the maximum likelihood estimates {tuew, Drew) for parameters {a, &)
J/ by solving the non-linear equations
/i Calculate the predicted value for week j

Forj=x, tof

j
[/ Calculate sum of squares of the difference between predicted value and actual value
50, =y, — "2

ot |

SSQ = X, S5Q /125

41 }is an index for the week upto the current week |
(1~ expl-by el x5 - 20 4y

J/ this Is a part of goodness of fit
//End of loop for |
// this is the goodness of fit for week x, to week i

/{ Decision to identify an inflection point by comparing the last two weeks of S5 values

ifi>=x,+5 then

[Check if we have the last two weeks of 55Q values

// Check the relative changes of $5Q; & 550, (to §5,; value, respectively

J/ 1f both of them

are greater than an accuracy threshold, say 10%, then J/ It's a default value

J/f an Inflection point is found at the week / - 2. And continue the | loop with X, =x, _, for next inflection points
alse
1/ Otherwise, continue the loop
end if
and if
mext i {fend of 1oop for i

Fig. 2: A series of the piece-wise exponential model

ITII. STAR OVERVIEW
A. Defect Trend Analysis

This section addresses our new innovative method for defect
trend analysis. The earlier version of the technique was intro-
duced in [8], [13]. Since then, we have significantly improved
the algorithm. There are two parts: multiple curve generation
and adjustment for the last curve.

The first step is finding inflection points or points where the
defect trend changes significantly. Figure 2 shows a typical
defect trend over time. There are multiple periods where the
trend significantly changes from period to period. We apply
a simple exponential curve as new defect data is added, keep
track of the closeness between the predicted curve and actual
data, and identify the significant change in the closeness based
on maximum likelihood estimates for a and b are computed for
every data point added. Once the inflection point is found, we
move the start date to a new one corresponding to the inflection
point. Repeating these steps until the end of the defect data,
we will find the final predicted curve, as shown in Figure 2.

The algorithm in Fig. 3 provides a high-level procedure for
finding inflection points and multiple curves. It is a series of
picce-wise exponential models with a general form of equation
1

m;(t;) = a;(1 — exp(—bit;)) +mi_1(ti—1) (1

Note m;(t;) is the cumulative defect data at time or week
t; for period i. Parameters a; and b; represent total defects
and detection rate for the period 7, respectively. The multiple
curves represent a software development process where each
subset of software modules is added to the test suite as it
becomes available for testing. It creates various waves of
defects detected during the test phase over time. A single
curve approach will not be able to accomplish the defect trend.
The advancement of computing technology makes complex
computing possible.

Most models for trend analysis require a relatively large
number of data points, i.e., weeks and several weeks closer
to the delivery date. In other words, the data trend must be
leveled off for the models’ effectiveness illustrated in Figure
2. In practice, there are some cases (especially during an early
test phase) where the last curve looks like a straight line.

Fig. 3: Algorithm for finding inflection points and multiple curves

This creates a problem since we are expecting a finite number
of defects. The latest curve of the multi-curve method needs
adjustment to start leveling off several weeks before delivery.
The adjustment is to extend the straight line to several weeks
before the delivery date and generate an exponential curve that
meets a target of 15% residual defects at the delivery date.
Refer to [4] for detailed adjustment.

B. Early Defect Prediction

Defect trend analysis is relatively simple and easy to use in
practice. However, it has some limitations. It requires defect
data several weeks before the delivery date to stabilize the
prediction. It is not appropriate for defect prediction during
the planning phase when actual defect data is unavailable,
called early defect prediction. We will introduce a concept
of leading data to assist in early defect prediction. We have
investigated possible leading data last several years based on
the availability and the correlation with defects and concluded
that effort data is best suited for this purpose. Two types
of effort data (development and test) are readily available
during the planning phase in practice. It is usually measured in
hours of effort required for completing a development activity,
typically at a sub-feature level.

« Development effort data: represents the complexity of the
software content. The development effort curve represents
how the content is developed over time. It is used to
predict the number of defects.

o Test effort data: represents the test progress if cumulative
test effort is normalized. The defect detection or find rate
is highly related to the test progress. In other words, the
shape of the defect find curve is closely related to the test
progress curve.

1) Transformation Algorithm: We have developed an in-
novative method for transforming the effort curve into the
defect curve, which goes through the target values at DI
(delivery for trial) and D2 (delivery for deployment). See [4]
for technical details. The transformation function contains two
elements: horizontal shift and vertical shift. In other words,
the leading curve (i.e., the effort curve) is transformed by
shifting it horizontally and vertically to go through the target
defects at D1 and D2 as closely as possible. In other words,

1200 5000

G Predicted Defect Curve .
1000 [% 4000

W 1
=1 1
2 g v
z i 01 s000 » i
= &0 Actual Defects Overlaid - 5 [~ —
;b A i 2 g A
% Z 10 w00 2]
= 4 ' = 2 1000
o Effart Curve o L] 1000 £
£ am = R 2 sw
g - 0 2
o & - B Y Ao o ¥
& e L
[Ao * Al A
A\ b\’ av .\;J\.l '\,!’\, A8 :0:.-" 'b\'

Project A Release A

Fig. 4: Early defect prediction with actual defect data

the transformation function from (z, y) coordinates to (Znew,
Ynew) 18 described in equations 2 and 3 for horizontal and
vertical shifts, respectively.

Tpew = &+ ,BIL‘ 2

Ynew = VY (3)

The parameter o represents the constant delay in weeks
from the effort curve to the defect curve, and 3 represents
the additional delay in the defect curve. The parameter v is
a ratio of defects and effort hours used for the best-fitted
curve. The unit is defects per effort hour. The problem is
formulated as a non-linear optimization problem with three
variables (or parameters) and two data points to minimize the
sum of distances between predicted defects and target defects
at DI and D2. We can solve this problem iteratively with
numerical analysis. It requires three-level loops and several
iterations for each level. A detailed algorithm is described in
[4]. Once actual data becomes available, we will adjust the
algorithm to incorporate actual data (in addition to the target
defects at D1 and D2). The adjustment is based on the number
of actual data points, say the last four weeks’ data as a default.
This will maintain the original early prediction during the early
phase of testing. And actual data will become a dominating
factor in the defect prediction as we approach the delivery
date. Figure 4 illustrates the effort curve transformed into the
predicted curve, which closely goes through the target values
at D1 and D2. It also shows the carly defect prediction and
overlays actual defect data, which is a near-perfect fit.

C. Closure Curve Prediction

Input data are the predicted arrival curve as the leading
and actual closure data, as shown in Figure 5. We will apply
the transformation function described in Section 4.2. We have
found that the predicted closure curve can be derived by
shifting the leading data to the right based on many project
data. This is a particular case where S = 1 and v = 1. We set
several actual closure data points to find the value o, which
provides the best curve. The default value is 2. That is, the
last 2 data points are used. In this example, we found o = 2.3,
which means the closure prediction is derived by shifting
the arrival curve by 2.3 weeks. Figure 5 shows the predicted
closure curve along with actual data. It visually demonstrates
the validity of the algorithm. This shifted value derived from
previous release data will be used for early closure prediction.

Fig. 5: Closure curve prediction vs. actual closure data

Fig. 6: Open defect curves: Actual vs. predicted

D. Open Curve Prediction

One of the most critical metrics in practice is the number
of open defects. It represents the defects that are still not
fixed. Ideally, we want all detected defects to be corrected
by delivery. The open defect curve can be derived as the
difference between the arrival curve and the closure curve,
ie.,

Open Defects = Arrival Defects — Closure Defects (4)

Figure 6 shows the actual open defect data closely following
the predicted curve.

E. Key Quality Metrics

We demonstrated the algorithms to generate arrival curves
with two cases: 1) defect trend analyses described in Section
4.1 and early defect prediction curves with and without actual
data described in Section 4.2. In addition, we presented closure
and open prediction curves in Sections 4.3 and 4.4, respec-
tively. Both actual data closely follow the arrival, closure,
and open predicted curves. Using these curves, we can derive
key quality metrics which will be used for the evaluation of
delivery readiness based on the quality targets.

1) % Residual Defects: We normalize residual defects by
the total defects to use this metric for other projects. It is
defined as:

Total Defects — Defects found
% Residual defects = — o 0o clects Joun (5)
Total defects

This metric is used to determine if we will find enough defects.
Our proposed threshold values based on the experience are as
follows: It is acceptable (green) if less than or equal to 15%,
at risk (red) if greater than 25%, and warning (yellow) for
in-between.

2) 9% Open Defects: We normalize open defects by defects
found. In other words,

Defects found — Defects fixed
f =
% Open defects Defects found ©

This metric is used to determine if we will fix enough defects.
Our proposed threshold values based on the experience are
as follows: It is acceptable (green) if less than or equal to
5%, at risk (red) if greater than 10%, and warning (yellow)
for in-between. Combining the above two quality metrics, we
can now decide whether the software release is ready for
delivery. A sample of metrics data is summarized in Table 7
Note that the Color coding of green, yellow, and red implies
“Acceptable,” “Warning,” and “At risk.”

Will we be ready for delivery on time with acceptable quality? o

Percentage Residual Defects (Will we find enough defects?)

Percentage Open Defects (Will we fix enough defects?)

25.8%
10.6%

121%

4.2%

Fig. 7: A sample of key quality metrics for the release readiness evaluation

IV. IMPLEMENTATION
A. Overview

User input data are defect data, development, test effort
data, and project milestone dates such as the test start date,
delivery date for customer trial (D1), and delivery date for
deployment (D2). The input data can be entered manually via
CSV files or imported directly from the customer database.
The core engine will take over the computation and prediction,
including preprocessing user input data suitable for central
processing. It implements innovative algorithms, which go
through the concept, prototype, proof of concept, trials, and
productization. Technical details are discussed in [4]. Outputs
are presented via our state-of-the-art user-friendly interface
with visualization with many info buttons explaining the
definitions of the terms and color-coding.

B. STAR System Architecture

STAR automates the entire process of input data extraction,
pre-processing, core analytics, and post-processing. Figure 8
presents STAR’s high-level architecture based on the AWS
platform. STAR collects data from multiple defect logging
tools using application programming interfaces (such as Flask)
and stores the data required in a unified format in two
databases: PostgreSQL & NoSQL (DynamoDB), improving
performance. This data is then pre-processed before being
stored in databases. Specifically, pre-processing involves ag-
gregating the data into a weekly or specified time frame and
preparing necessary input data for the core engine, which
performs prediction. An essential pre-processing function is
to keep the data consistent from project to project, and within
a project, from release to release. As an example, the pre-
processing may include:

« Unifying database field and value mappings since dif-
ferent projects/databases use field names for the same
properties, e.g., priority vs. severity.

e Some field values may need to be mapped to specific
values, e.g., a defect is assigned to a geographic location
vs. an organizational unit.

o Checking for defect properties to identify duplicates or
those from other releases to facilitate quality vis-a-vis
project management.

The core engine is developed using Python Scientific Stack,
and the user interface is based on Javascript ES6 (React).
Terraform AWS is used as the infrastructure as code (IaC).

C. Demo Data

Actual defect and effort datasets have been generated based
on over 50 years of experience working with real projects.

Unified Baehd

adWws

Software
Defects

Preprocessing

Read /
Write

Core Analytics

Internal

v
oute¥ Database

- Core Engine: Python ScientificStack - Databases: PostgreSQL & NoSQL (DynamoDB)
- APIs: Python Flask - Infrastructure: AWS & Terraform
- Ul: Javascript ES6 (React)

Fig. 8: STAR System Architecture

Based on proprietary analytical models, arrival, closure, and
open defect data predictions will be produced [4]. State-of-the-
art visualization will help you understand STAR results casily.
A simple, user-friendly user interface will make it easy to use
STAR. There are four sets of project data, called Projects A
— D, and each project has a few releases. They encompass a
variety of project sizes from small to large and various shapes
of defect trends. We will use them to demonstrate the power of
automated defect prediction for all cases, i.e., end-users need
no parameter adjustments.

« Project A: This data set presents a typical scenario where
we want to know whether the current release is ready for
delivery several weeks before delivery.

o Project B: This data set presents several snapshot views
for the same release. It demonstrates the importance of
continuous defect prediction as the defect trend changes
depending on test progress.

« Project C: This data set contains three releases within the
same project to demonstrate release over release.

e Project D - This data set demonstrates an early defect
prediction for Release B using defect and effort data from
the previous release, Release A.

D. Preprocessing

We first prepare effort data suitable for the prediction algo-
rithm by combining development and test effort to generate
the leading data.

« Normalizing development effort data by the test progress:
We first normalize development effort data by the test
progress, which is the test effort curve divided by the
maximum value of the test effort data. The normalized
development effort curve represents how the software
content is tested over time.

%Residual defects and
%Open defects at delivery
are used to compare against
the target values, where we
use two delivery milestones
(D1 & D2):

A table with an overall
quality summary: It
summarizes an overall
assessment of release
quality based on
currently available data

Software
Quality

Assurance
Metrics:

Target values for "Green (Acceptable)”, “Yellow
(Warning)” and “Red (At Risk)" in %Residual
and %Open are chosen based on our past
experience with various projects and releases.
These target values can be adjusted based on
specific project expectations.

Visual presentation of defect
arrival, closure and open will
help capture the trends and
the tables will help identify
values at key milestones.

Will we be ready for delivery on time with acceptable quality?

Will we be ready for delivery on time with acceptable quality? @

Will we find enough defects? @

Notes: % Residual Defects = [Defects Remaining After] / [Total Defects] % Open = [Open Defects] / [Defects Arrived]

Defect Arrival / Clasure

Latest (2079-04-017) D1 (2079-04-28) D2 (2019-06-76) Total

Arrival 1,387 1,704

Closure 1,189

198

1.524

Open 180

Wil we fix en

Will we find enough defects?
Red >35

Yallow s=15

Green <15

2,019 2,206

1,935 2,296

84 °

Will w fix enough defects?

0% Lower/Upper Limit
Open Defects

% Open

NA
87
57

NA
55 Yellow =5

35 Grean

Fig. 9: Explanations of Executive Summary View

o Adjusting the tail end of the normalized development
effort curve: We must adjust the tail end since it shows
a rapidly flattening trend. This is because test effort
represents internal test activities. The adjustment will
compensate for customer defects. Defect data usually
includes those found by customer testing and operation.
The adjustment can be made using the trend analysis
algorithm discussed in Section 4.1. The final adjusted
cffort curve is shown in blue in Fig. 4.

Calculation of defect density: We are now ready to calcu-
late defect densities at D1 and D2 using the defect curve
and the adjusted normalized effort curve. An interpolation
method identifies values at D1 and D2, respectively. We
can then calculate defect density as defects over effort
hours.

Target defect values at the delivery date: We perform the
steps described above for the effort data from the current
release to derive the adjusted normal development effort
curve. Using the defect densities, we can compute target
defects at D1 and D2 for the current release as effort
hours multiplied by defect density. The target defects are
shown in Fig. 4.

V. SAMPLE VISUALISATIONS
A. Defect Trend

STAR has a defect trend menu in the “Executive Summary”
View represents a defect prediction based on actual defect
trend data. STAR automatically identifies the inflection points
using the above mentioned algorithm and generates a series
of piece-wise exponential models. Although the algorithm
is designed for software defects at the release level, it is
flexible for accommodating individual components, severities,
customer-based defects, hardware failure data, cybersecurity
issues, and many other applications. The defect filter box in

Wil we be ready or deivery on time with acceptabe qualty? @ Defect

Latest (2019-04.01) 1 (20190428 D2 (201806-16) Total
Percentage Residual Defects (Wil we i enough defecis?) an
Percentage Open Detects (il we ixenough dfects?) e

1387 1708 2019 2208

1189 1524 1035 220

138 180 “ o

Al we find enough defects? @

ve T enough defects? @

0% Lowerpper Limit
Open Dotocts
percentage Open

1687191 68/100
180 0

106% am

Open Detect Predicton

Open(hcua) Open (Preaiced LowarLimt Lower Lt

Fig. 10: Executive Summary View

the Executive Summary View demonstrates the power of the
algorithm for components and severities, where each defect
data set varies in size and shape as small as less than 100
defects. All cases show a perfect fit.

B. Executive Summary

Figure 10 shows critical quality metrics with tables, charts,
and self-explanatory info buttons. As Table 9 highlights, STAR
provides a few info buttons to explain the interpretations.

o % Residual defects to answer the question: Will we find
enough defects?

%Open defects to answer the question: Will we fix
enough defects?

Defects at Delivery for trial (D1) and delivery for deploy-
ment (D2)

Arrival/closure and open defect charts help capture the
trends and identify the values at critical milestones
Defect filter(s) allows a selection of components and
severity to demonstrate the power of automatic prediction

DEFECTFILTERS (2)

Severilies

Powih [ﬂe»wr\ . omponent

START YOUR TWO MONTH FREE TRIAL [EERIReLREIT G Crlical
Executive Summery O Component O Mejor
O componentC O Minor

Notss: % Resldudl Defcts = [Deiecs Remaring A [ToslDeects] % Open = [03en Deects][Defcts

For each view, additional filters for component and severity are provided for
a given project & release to change the output in any combination.

Fig. 11: Defect prediction by component and severity

in various ways. Figure 11 highlights the defect filters.
For each view, additional filters for component and sever-
ity are provided for a given project & release to suit all
users, from developers to executives.

C. Prescriptive Analytics

Real-time view of quality impact by a selected action
provides two corrective actions: Delay delivery date and Addi-
tional developers for bugfixes. It will interactively quantify the
improvement in %Residual and % Open for respective options,
as highlighted in Fig. 12

o Arrival/closure: Weekly view of defect arrival and closure
curves

« Defects by component: Defects trend breakdown by com-
ponent help identify a problematic component.

o Defects by severity: Defect trend breakdown by severity
to help focus on critical and major defects. See Fig. 13
for a sample output.

o Release over release: Defect trend view of the last three
releases, normalized by the delivery date

« Prediction stability: Weekly changes in prediction at the
delivery date over time for evaluating the stability and
accuracy of prediction — demonstrates the accuracy of
STAR prediction very close to actual data many weeks
before the delivery date

« Early prediction (Leading data (PPM)) shows an early
defect prediction arrival curve generated without actual
defect data with +/- 10% limits and target defects at D1
and D2, as shown in Figure 14. The target values are
derived using defect and effort data from the previous
release. This is available only for Project D Release B.

D. Early Defect Prediction

STAR implements the innovative algorithm described above
to automatically generate the defect prediction curve without
actual defect data. It transforms the effort data (as leading data)
into a defect curve. The outputs of early defect prediction are
shown in the following two STAR menu items:

« Leading data (PPM): This menu represents an early defect
prediction without actual defect data during the planning

How can we Improve our software quality?
Delay Release by 0 Weeks Add 15% More Developers Current 258 121

0 & 15

% Residual Defects

Adjusted 245 10.5

Add 10% More Testers Reduce Content by 0%
10 &= 0 % Open Defects. Current 106 42
] Adjusted 8.4 24

Cumulative Defect Prediction Open Defect Prediction

Anival Closure Armrival (Predicted) Closure (Predicted) Arrival i Open (Actual} Open (Predicted) Open (Adjusted)

Fig. 12: STAR interactively quantifies the quality improvements for corrective actions

Cumulative Arrival

C
4

ComponentA ComponentB ComponentC ComponentD Component £

Weekly Arrival

2

(]
M-@

16.3%
126%
6.9%
206%
30.5%
14.8%

Fig. 13: Defect breakdown by component

phase. It is based on previous release data (Release A)
with software development and test effort data. This is
available only for Release B.

o Leading Data (IPM): This menu represents a defect
prediction with actual defect data from Release B using
Leading data (PPM) output as the leading data.

Figure 14 shows the early defect prediction curve derived in
III-B with actual defect data overlaid. Figure 15 provides ar-
rival/closure and open curves with actual defect data. Together,
it enables a visual inspection of the prediction accuracy. Figure
16 shows the stability of early prediction with actual defect
data. We also overlaid the stability of defect trend analysis
on top of the chart. You will see a significant difference. It
is the power of the early defect prediction with effort data in
improving the prediction stability and accuracy.

VI. CONCLUSION

We introduced a revolutionary online tool for software qual-
ity assurance. STAR answers frequently asked questions and
more to help project managers make intelligent decisions about
development resources and release quality at delivery. STAR
provides a simple, user-friendly interface with state-of-the-art
visualization. The core engine implements a few innovative
statistically sound analytics, thoroughly tested using actual
project data. It provides stable and accurate defect prediction
by incorporating the previous release’s development and test
effort data. A series of piece-wise exponential models achieve

Early Delect Pradiction

Actual PPM Pradiction Uppar Limit Lower Limit User Input

Arrival (Actual) Arrtval (Pregictea) Predictaa @ D2 Target Target +10% Target -10%

Fig. 14: Early arrival defect prediction with target values at D1 and D2, actual defect
data overlaid

Cumulative Defect Prediction Open Defect Prediction

Mar Apt May Jun Jul Aug Sep Aug Sep Oct Nov D pr May Jun Jul Aug Bep

Arrival (Actual) Closure (Actual) Arrival (Predicted) Closure (Predioted) Open(Actual) Open (Predicted) Lower Limit Lower Limit

Fig. 15: Early prediction for arrived/closed/open defect curves with actual data overlaid

prediction stability and accuracy several weeks before delivery.
It also provides an excellent goodness-of-fit compared to
traditional single-curve fitting models. Since it is a cloud-based
tool, it is available anytime, anywhere, and to anybody. STAR
is at the forefront of a digital engineering tool for software
reliability engineering. It is available for public use. Since
the algorithm is made flexible, STAR can be used to predict
hardware failures. It enables an analysis of both software and
hardware reliabilities at the same time.

ACKNOWLEDGMENT

The author would like to thank Dr. Rashid Mijumbi, Rory
Harpur, Joseph Good, Mike Okumoto and Andrew Raposo for
their contributions to STAR, and to this paper.

REFERENCES

[1] John D Musa. A theory of software reliability and its application. IEEE
Transactions on Software Engineering, SE-1(3):312-327, 1975.

[2] Ma Dan. The business model of ”Software-As-A-Service”. In Proceed-
ings - 2007 IEEE International Conference on Services Computing, SCC
2007, 2007.

[3] Kazuhira Okumoto, Abhaya Asthana, and Rashid Mijumbi. BRACE:
Cloud-based software reliability assurance. In Proceedings - 2017
IEEE 28th International Symposium on Software Reliability Engineering
Workshops, ISSREW 2017, 2017.

[4] Kazuhira Okumoto. Early Software Defect Prediction: Right-Shifting
Software Effort Data into a Defect Curve. In 2022 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW),
pages 43-48, 2022.

[S] Hoang Pham and Xuemei Zhang. NHPP software reliability and
cost models with testing coverage. European Journal of Operational
Research, 145(2), 2003.

Fig. 16: Stability and accuracy of early defect prediction vs. defect trend analysis

[6]

[7]

[8]

9]

[10]

[11]

[12]

[13]

[14]

Xuemei Zhang and Hoang Pham. Software field failure rate prediction
before software deployment. Journal of Systems and Software, 79(3),
2006.

David D. Hanagal and Nileema N Bhalerao. Literature Survey in
Software Reliability Growth Models. In Software Reliability Growth
Models, pages 13-26. Springer Singapore, Singapore, 2021.

Rashid Mijumbi, Kazuhira Okumoto, Abhaya Asthana, and Jacques
Meekel. Recent Advances in Software Reliability Assurance. In 2018
IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), pages 77-82, 2018.

P K Kapur, Shakti Bhushan, and Said Younes. An exponential SRGM
with a bound on the number of failures. Microelectronics Reliability,
33(9):1245-1249, 1993.

Shigeru Yamada, Mitsuru Ohba, and Shunji Osaki. S-Shaped Reliability
Growth Modeling for Software Error Detection. IEEE Transactions on
Reliability, R-32(5):475-484, 1983.

Amrit L. Goel and Kazu Okumoto. Time-Dependent Error-Detection
Rate Model for Software Reliability and Other Performance Measures.
IEEE Transactions on Reliability, R-28(3), 1979.

Rashid Mijumbi, Kazu Okumoto, and Abhaya Asthana. Software
Reliability Assurance in Practice. In Wiley Encyclopedia of Electrical
and Electronics Engineering. 2019.

Kazu Okumoto, Rashid Mijumbi, and Abhaya Asthana. Software Qual-
ity Assurance. In Mohammad Abdul Matin, editor, Telecommunication
Networks, chapter 3. IntechOpen, Rijeka, 2018.

Rashid Mijumbi, Kazuhira Okumoto, and Abhaya Asthana. Towards
automated, end-to-end software defect prediction. In Proceedings - 25th
ISSAT International Conference on Reliability and Quality in Design,
2019.

