2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)

Early Software Defect Prediction: Right-Shifting
Software Effort Data into a Defect Curve

Kazuhira Okumoto
Sakura Software Solutions LLC
Naperville, IL USA
kokumoto @sakurasoftsolutions.com

Abstract—Predicting the number of defects in software at
release is a critical need for quality managers to evaluate the
readiness to deliver high-quality software. Even though this is
a well-studied subject, it continues to be challenging in large-
scale projects. This is particularly so during early stages of
the development process when no defect data is available. This
paper proposes a novel approach for defect prediction in early
stages of development. It utilises a software development and
testing plan, and also learns from previous releases of the same
project to predict defects. By producing key quality metrics such
as percentage residual defects and percentage open defects at
delivery, we enable decisions regarding the readiness of a software
product for delivery. Over several years, the approach has been
successfully applied to large-scale software products, which has
helped to evaluate the stability and accuracy of defects predicted
at delivery over time.

Index Terms—Early defect prediction, Software quality assur-
ance, Software reliability growth modeling, Software effort data

I. INTRODUCTION

Project managers want to balance development resource
allocation and software quality at delivery. It is critical to
understand where software defects! are injected and removed
during the software development process to evaluate software
quality. Figure 1 summarizes defects injected and removed
during the software lifecycle. The process begins with content
(or features) specification, followed by software design, coding
& unit test, and formal testing (such as integration test, feature
test, and system test). As the internal test is winding down,
the software is typically delivered to the customer site for an
acceptance test or joint customer site test, followed by the
deployment for customer operation. Defects are introduced
during requirement specification and code development (i.e.,
design, coding, and unit test). Defects are found and removed
during the entire lifecycle. However, defects found by indepen-
dent testers and customers are typically reported and available
for analysis. A subset of defects during the customer operation
often causes a system outage (or failure), resulting in a full
or partial system downtime. These defects are related to the
software reliability and availability. However, the terms are
often used interchangeably with other types of defects in the
literature.

n this paper, we use the terms such as defects, faults, and bugs inter-
changeably.

978-1-6654-7679-9/22/$31.00 ©2022 IEEE
DOI 10.1109/ISSREW55968.2022.00037

43

Old defects Carried Over
from Previous Release

New Defects
Introduced in Release R

New Features
Identified for Release R

Requirement Specification
& Software Design

Software
Development Process

Coding & Unit Testing

Formal (Feature, Integration,
System, etc.) Testing

Customer Site
Testing

Defects Not Found in
Release R

Defects Not Found in
Release R
Fig. 1: Software Development Process vs Defect Injection and Removal.
Defect = Faults = Bugs. Outages = Failures.

Customer
Operation

< Software Life Cycle >

In this paper, we introduce an innovative method for auto-
matically generating multiple curves for defect prediction. It
provides consistency and accuracy for defect prediction during
the test phase. We offer in-depth technical discussion. It is
entirely different from a traditional single curve representation
of the defect trend.

II. RELATED WORK

Methods for predicting software defects over time are often
called software reliability growth models using defect trend
analysis. It looks at the cumulative defect detection (or arrival)
curve to determine the shape of the curve. Over 220 models
and a few tools (e.g., [1]-[7]) have been established since
the early 1970s, but how to put them in practice remains
unsolved primarily. This is mainly because defect data from
actual projects are not readily available to researchers in the
field. It started with a simple exponential curve [7] for defects
found or detected during a system test phase over 40 years ago.
The assumption is that a software product is developed and
stable. There is a finite number of defects in the software, and
each defect is detected according to an exponential distribution
or a constant rate. The number of defects detected can be
formulated as a non-homogeneous Poisson process (NHPP). It
is simple enough to develop a statistical method for estimating
parameters using the maximum likelihood method [7], [8]. It
represents the defect trend during system tests because the
software content is mainly developed and reasonably stable.

Since then, it’s been extended to cover the entire test
phase, including feature, integration, functional, and system
tests. The original exponential model has been modified to be
flexible, e.g., substituting a different distribution function into
the exponential distribution function. It accommodates various
shapes of defect data. But it becomes complex. They are
often called S-shaped models [1], [2], e.g., Weibull, Gamma,
and logistic. However, none of the models have a statistical
method of estimating parameters due to the complex nature of
the curve. Curves are usually generated manually by subject
matter experts. It turns out that most S-shaped models cannot
explain an early part of defect data if focused on the latter part
of the defect data. A single curve approach does not appear
sufficient to describe the entire defect data.

Recently we have developed an innovative method [9], [10]
for defect trend analysis. It uses multiple curves instead of a
single curve to describe the entire defect trend over time. It
improved prediction accuracy and stability over the traditional
models—no more single curve fitting. We have developed
an innovative algorithm to automatically identify the trend
changes or inflection points to generate various curves. It’s
now practical in use due to the advancement of computing
technology. We will briefly describe the method in Section
1.

We have developed another innovative method [11] for a
project manager to balance development resources vs. software
quality at the delivery date. It provides defect arrival (or
detection) curves without actual defect data to be used for
an early phase of the project, and hence, it is called an early
defect prediction. It is described in Sections IV and V with or
without actual defect data, respectively. Stability and accuracy
of prediction will be addressed in Section VI.

III. DEFECT TREND ANALYSIS

This section addresses our new innovative method for defect
trend analysis. The earlier version of the technique was intro-
duced in [9], [10]. Since then, we have significantly improved
the algorithm. There are two parts: multiple curve generation
and adjustment for the last curve.

A. Inflection points for generating multiple piece-wise expo-
nential curves

The first step is to find inflection points or points in time
where the defect trend changes significantly. Figure 2 shows
a typical defect trend over time. There are multiple periods
where the trend significantly changes from period to period.
We apply a simple exponential curve as new defect data is
added, keep track of the closeness between the predicted curve
and actual data, and identify the significant change in the
closeness. Maximum likelihood estimates for a and b are
computed for every data point added. Once the inflection
point is found, we move the start date to a new start date
corresponding to the inflection point. Repeating these steps
until the end of the defect data, we will find the final predicted
curve, as shown in Figure 3. The algorithm in Fig. 4 provides a
high-level procedure for finding inflection points and multiple

44

Software Defects Trend: Prediction vs. Actual
yL=2(1-expl-bx1))

(0,y0)
= (26, 2086) o
week o |
——Actual

(13,795) A Lokl EES
P

H week 7 - - = Presiction
51 % *
500 5 Siope. Deivery
(10=953) D232

0 s 0 15 2 25 2 3B 40
Weeks

Cumulative Software Defects

Weeks from Test Start

Fig. 2: Typical defect trend curve with Fig. 3: Predicted Curve and Illustra-
multiple periods of various sub-trends tion of the last curve modification

curves. It is a series of piece-wise exponential models with a
general form of:

mi(t;) = a;(1-exp(—bit;)) + my_1(ti_1) (D

where m;(t;) is the cumulative defect data at time or week
t; for period i. Parameters a; and b; parameters represent
total defects and detection rate for period ¢. The multiple
curves represent a software development process where each
subset of software modules is added to the test suite as it
becomes available for testing. It creates various waves of
defects being detected during the test phase over time. A single
curve approach will not be able to accomplish the defect trend.
The advancement of computing technology makes complex
computing possible.

B. Adjustment for the last curve

Most models for trend analysis require a relatively large
number of data points, i.e., weeks and several weeks closer
to the delivery date. In other words, the data trend must be
leveled off for the models to be effective, as illustrated in
Figure 3. In practice, there are some cases (especially during
an early test phase) where the last curve looks like a straight
line. This creates a problem since we are expecting a finite
number of defects. The latest curve of the multi-curve method
needs adjustment to start leveling off several weeks before
delivery. The adjustment is to extend the straight line to several
weeks before the delivery date and generate an exponential
curve that meets a target of 15% residual defects at the delivery
date, as highlighted in Figure 3. In other words, the initial
arrival rate at rg is the slope:

axb=nmrgy

2

Note that we have
Total Defects — Defects at Do 3)
Total Defects
Values for a and b can be determined by solving eq. 2 and
3. Past historical project data can specify values for weeks to
the delivery date, and % residual defects.

% Residual Defects =

IV. EARLY DEFECT PREDICTION WITHOUT ACTUAL
DEFECT DATA

Defect trend analysis is relatively simple and easy to use in
practice. However, it has some limitations. It requires defect
data several weeks before the delivery date for the prediction to
become stable. It is not appropriate for defect prediction during
the planning phase where actual defect data is not available,

Input data
{25, y;), where y; (=0, -, p) is the number of defects found in (x,, x;), where (x,, ¥,) and (xp. ¥,) represents the
start week and the end week of the entire defect data, respectively.
Procedure
/{ Start the loop at {x,, ¥} to the end week
Fori=x, tox, // iis an index for the current week upto the end week
ifi»=x; +3 then // minimum number of data points = 3
// Find the maximum likelihood estimates (a,,,,, b,) for parameters (g, b)
{/ by solving the non-linear equations (see [1])
1/ Calculate the predicted value for week |
Forj=x toi // jis an index for the week upto the current week i
T = Qe (L= 0xP0-byers(%) - X)) 43,
1/ Calculate sum of squares of the difference between predicted value and actual value
$5Q =y - 712 /f this is a part of goodness of fit
next j //End of loop for |
550Q;= zj:x, §5Q/ li-x) /1 this is the goodness of fit for week x, to week
// Decision to identify an inflection point by comparing the last two weeks of 550 values
ifi>=x, + Sthen // Check if we have the last two weeks of S50 values
// Check the relative changes of 550, & 55¢;_;to S50, value, respectively
J{ If both of them are greater than an accuracy threshold, say 10%, then // It's a default value
/I an inflection point is found at the week i - 2. And continue the | loop with x, =x; _, for next inflection points
else
/{ Otherwise, continue the loop

end if

next i /fend of loop for i

Fig. 4: A procedure for finding inflection points and multiple curves

Incorporating Previous Release Data

Defect Data from
Current Release

Dev & Test Effort Data
from Current Release

Dev & Test Effort
Data from
Previous Release

Defect Data from

Previous Release

Fig. 5: Adjusted normalized effort curve vs. defect arrival curve

called an early defect prediction. We will introduce a concept
of leading data to assist in early defect prediction. We have
investigated possible leading data last several years based on
the availability and the correlation with defects and concluded
effort data is best suited for this purpose.

This section describes specific steps for early defect pre-
diction, including closure and open curve predictions. We
also validate the predicted curves by overlaying actual data.
An overview of the process is illustrated in Figure 5. It
incorporates previous release data using effort data as leading
data.

A. Input data

Project milestone dates are quired. The start date, Dy, repre-
sents the start of testing. We expect to see defect data coming
in shortly after Dgy. A project typically has two delivery
dates: Delivery for trial (D;) and Delivery for commercial
deployment (D). In addition, we need two sets of data from
the previous release, i.e., defect data and effort data. Defect
data is typically sorted every week in a cumulated format. Two
types of effort data (development and test) are readily available
during the planning phase in practice. It is usually measured in
hours of effort required for completing a development activity,
typically at a sub-feature level.

« Development effort data: represents the complexity of the
software content. The development effort curve represents

45

how the content is developed over time. It is used to
predict the number of defects.

o Test effort data: represents the test progress if cumulative
test effort is normalized. The defect detection or find rate
is highly related to the test progress. In other words, the
shape of the defect find curve is closely related to the test
progress curve.

Typical cumulative development and test effort data are
shown in Figure 6. Note that there is a significant gap between
the development and test effort curves. For a large-scale
development, many low-level modules need to be integrated
for a feature to be ready for the test. The defects are reported
from feature-level tests.

B. Preprocessing

We first prepare effort data suitable for the prediction algo-
rithm by combining development and test effort to generate
the leading data.

1) Normalizing development effort data by the
progress: We first normalize development effort data by the
test progress, which is the test effort curve divided by the
maximum value of the test effort data. It is calculated as:

Test effort data
Max of test effort data

NDE = maxz(DE) x %Test progress

test

“)

(&)

Where DE is the development effort and NDE is the nor-
malised development effort. The normalized development ef-
fort curve represents how the software content is tested over
time. It is shown in Figure 6.

2) Adjusting the tail end of the normalized development
effort curve: Next, we will have to adjust the tail end of the
normalized curve since it shows a rapidly flattening trend.
This is because test effort represents internal test activities.
Defect data usually includes those found by customer testing
and operation. The adjustment will compensate for customer
defects. The adjustment can be made using the trend analysis
algorithm discussed in Section III.

3) Calculation of defect density: We are now ready to cal-
culate defect densities at D1 and D5 using the defect curve and
the adjusted normalized effort curve. An interpolation method
is used for identifying values at D; and Ds, respectively. We
can then calculate defect density DD as:

Y% Test progress =

Defects
= 6
Effort Hours ©®

Figure 7 shows the adjusted normalized effort curve with
overlaid defect arrival curve. As mentioned earlier, the defect
curve is highly related to the effort curve.

4) Target defect values at the delivery date: We perform
steps described above for the effort data from the current
release to derive the adjusted normal development effort curve.
Using the defect densities, D D, obtained in 6, we can compute
target defects (1'D) at Dy and Ds for the current release as:

DD

TD = Effort Hours x DD 7)

Project D Release A: Development Effort vs. Test Effort

Development effort

Normalized
Development effort

Project D Release A: Adjusted Normalized Development Effort
600 3500
3000
| 2500
H 2000 £
|]
|
i

—adjusted_normalize
d_dev_effort

500

= Defects

400

Defect Density
DD = Defects / Effort

300 > 300

1500 &
1000
500

| 0

x1,000 hours)

200

Effort (x1,000 hours)

B 100

|
1
|
'
|
D1
0 o8 0 '

'»
& 1“1

&
y\ AR

i
S

)
g
\@\ \fo\ \4\ w«\

3 o
\1°1 \\@

> > & &
o s\“ o7 % " i q,\‘\ o A0 @

Effort (x 1,000 hours)

Project D Release B: Adjusted Normalized Development Effort
with Target Defects

Project D Release B: Early Defect Prediction Curve with Actual
Defects Overlaid
1200

1000

. 5000
1200 5000 Predicted Defect Curve

v 7 1
1000 5 4000
Sk Target Defects = 1000 2 g0 H T R
n o h, @2
! 3000 £ || 8 ActualDefects Overlaid g —_
600 ; 2| 2 I 5
s i I 000 & || X 40 | AR
Effort Curve ' | 5 Effort Curve ! 1000
1000 £
200 5 & 200 D1
0 ' l 0 0 == il 0
S & & & O
>
o \%“\ \ﬁ\ & ® Ry ey o o ®

W oar o o
\e\"oﬂ“ A

Fig. 6: Effort data: Development, test, Fig. 7: Normalized development effort Fig. 8: Target defects vs. adjusted nor-Fig. 9: Early defect prediction with

normalized development curve with the adjustment

C. Transformation algorithm for early defect prediction

We now have input data (as shown in Figure 8) ready for
generating an early defect prediction curve for the current
release. We will use the logic (as described in [9]) derived
from the Quantile-Quantile (Q-Q) plot, i.e., a defect curve
is highly correlated to a leading curve, which is the effort
data in this case. The transformation function contains two
elements: horizontal shift and vertical shift. In other words, the
leading curve (i.e., the effort curve) is transformed by shifting
it horizontally and vertically to go through the target defects
(TD) at D; and D5 as closely as possible. The transformation
function from (x, y) coordinates to (Tpew, Ynew) 1S described
in eq. 8 and eq. 9 for horizontal shift and vertical shift
respectively.

®)

Tpew = @+ Bz

(€))

The parameter « represents the constant delay in weeks
from the effort curve to the defect curve, and (3 represents
the additional delay in the defect curve. The parameter -y
is determined as a ratio of defects and effort hours used
for the best-fitted curve. It means defects per effort hour.
It is a non-linear optimization problem with three variables
(or parameters) and two data points to minimize the sum of
distances between predicted defects and target defects at D,
and Ds. We can solve this problem iteratively with numerical
analysis. It requires three-level loops and several iterations for
each level. We need to set up the initial value, the increment,
and the maximum number of iterations for each level. Table I
shows default values developed by a trial and error method for
several different data sets, where D D5 is the defect density at
the delivery date Ds.

Ynew = VY

‘ Parameter ‘ Initial Value ‘ Increment ‘ Max. Iterations ‘

o 4 -0.5 10
5] 0.7 0.05 10
0% DD2 —0.9 0.01 10

TABLE I: Default values for the transformation parameters

These numbers can be implemented as separate parame-
ters to be changed according to the required accuracy. Our
proposed default values are considered reasonable in practice
based on our experience. For each level we keep track of

malized development effort curve

46

actual defects overlaid

minimum sum of distances (S D) between target defect values
(I'D) and predicted defect values (PD) at D and Ds. It is
calculated as:

SD = w x [TDy — PDy| + (1 — w) x [TDy — PD,| (10)

Where w represents a weight factor with a default value
of 0.8. Note that target defects (7'D) can be computed from
7, and predicted defect values (PD) are calculated using the
transformation functions 8 and 9. Note that the transformed
curve is no longer aligned with the original x-axis due to 8.
We use an interpolation method to calculate exact PD values
at Dy and Ds.

The following three levels of iterations will be performed.

o Step 1: We first begin the iteration at Level 3. We
calculate the SD value and compare it with the previous
iteration. The SD values at Level 3 (SD3) are expected
to decrease until the minimum value is found. It will stop
when the current SDj3 is larger than the previous SDs.
We set the last SDs as the min(SDs) and the values of
«, 3, and 7.

o Step 2: We set min(SDsy) = min(SDs) and then move
to the next value of Level 2 and repeat the Level 3
operation. The SD values at Level 2 (SDs) are expected
to decrease until the minimum value is found. It will stop
when the current S D5 is larger than the previous SDs.
We set the last SD5 as the min(SD2) and the values of
«, 3, and 7.

o Step 3: We set min(SD1) = min(SD2) and then move
to the next value of Level 1 and repeat the Level 2 and
Level 3 operations. The SD values at Level 1 (SD;) are
expected to decrease until the minimum value is found. It
will stop when the current S D is larger than the previous
SD;. We set the last SD; as the min(SD;) and the
values of «, (3, and 7.

The above iterative procedure will find the global minimum
and respective parameter values. We re-calculate the final
predicted curve with the final parameter values. Note that the
last curve will need to be converted to weekly data via an
interpolation method since the transformation shifted the time
scale. The final defect arrival curve is shown in Figure 9, where
the curve should be closely going through the target defects at
Dy and D,. We can also overlay actual defect data to validate
the early defect prediction, as shown in Figure 9. We have

Project A Release A
2500

2000

1500

1000

Cumulative Defects
Open Defects
&
8

100
Actual Closure Dehverv Date 50 2

’L
\@\ 1%\ \x\

\\\ \a)x\ %0\ \\\ ,,;,\ \,.p\ \»’c\ \@\ -.,»\ ,50\ \\,\

o %x\

. J Actual Open Defects
Predicted arrival ; B <z ke 300
= 250 e
Predicted Closure 200

Predicted § g |
¢ Open Defects T -

Project A Release A

49\

Early Defect Prediction - Project D Release B
5000

Delivery Date 4500 E———
- 4000 = < gz
i i Predicted Arrival =

3000 =
2500

2000 P~ Predicted Closure
1500 = 0
—

1000
500

0 Q 0 Q 0 Q Q () 0 Q Q
\»\ \x\ \\\1 \\\1 \\\1 G \»\1 \\\1 o \\\1 \»\1 \\.\1 o \\\1

o

) o °

3> Y 3>

AR
e\ q\ o @\

5 S L\l

Fig. 10: Closure curve prediction vs. actual closure Fig. 11: Open defect curves: Actual defects vs.

data predicted defects

completed an early prediction for the defect arrival curve. We
are now ready to look at a closure curve prediction.

D. Closure curve prediction

Input data are the predicted arrival curve as the leading
data and actual closure data, as shown in Figure 10. We will
apply the transformation function described in Section IV-C.
We have found that the predicted closure curve can be derived
by shifting the leading data to the right based on many project
data. This is a particular case where § = 1 and v = 1. We set
several actual closure data points to find the value «, which
provides the best curve. The default value is 2. That is, the
last 2 data points are used. In this example, we found o = 2.3,
which means the closure prediction is derived by shifting the
arrival curve by 2.3 weeks. Figure 10 shows the predicted
closure curve along with actual data. It visually demonstrates
the validity of the algorithm. This shifted value derived from
previous release data will be used for early closure prediction.

E. Open curve prediction

One of the most critical metrics in practice is the number
of open (or backlog) defects. It represents the defects that are
still not closed (or fixed). Ideally, we want all detected defects
to be fixed (or corrected) by delivery. The open defect curve
can be derived as the difference between the arrival curve and
the closure curve, i.e.,

Open Defects = Arrival Defects — Closure Defects (11)

Using the same data as in Section IV-D, we calculated the
open defect curves for actual and predicted values from 11.
Figure 11 shows the actual data closely following the predicted
curve.

E. Outputs

In Sections IV-C, IV-D and IV-E, we demonstrated the
algorithm to generate the following early defect prediction
curves without actual data: Predicted arrival curve, Predicted
closure curve, and Predicted open curve

These curves are illustrated in Figure 12 for the arrival and
closure curves and Figure 13 for the open curve, respectively.
They also show actual data for arrival, closure, and open curves
overlaid with the predicted curves, respectively. Both actual
data are closely following the predicted curves. Using these
curves, we can derive key quality metrics.

47

Fig. 12: Actual arrival and closure data with early
defect prediction

e % Residual defects: We normalize residual defects by
the total defects to use this metric for other projects. It
is defined as:

Total defects — Defects found

% Residual defects =
o Residual defects Total defects

12)
This metric is used to determine if we find enough
defects. Our proposed threshold values based on the
experience are as follows: It is acceptable if less than
or equal to 15%, at risk if greater than 25%, and warning
for in-between.
e % Open defects: We normalize open defects by defects
found, which is defined as:

Total defects — Defects fixed
Defects found

This metric is used to determine if we fix enough defects.
Our proposed threshold values based on the experience
are as follows: It is acceptable if less than or equal to 5%,
at risk if greater than 10%, and warning for in-between.

% Open defects = (13)

Combining the above two quality metrics, we can now make
an intelligent decision about whether the software release is
ready for delivery. A sample of metrics data is summarized in
Table II.

‘ Will we be ready for delivery on time with acceptable quality ? ‘

Key Quality Metrics D1 D2
% Residual Defects (Will we find enough defects?) pLEDET 13.80%
% Open Defects (Will we fix enough defects?) 13.20% 6.90%

TABLE II: Sample metrics for the release readiness evaluation

V. EARLY DEFECT PREDICTION WITH ACTUAL DEFECT
DATA

As the test activity begins, defect reports start coming in.
We want to update the original defect arrival prediction curve
with actual data. We will follow the latter part of the process
described in Figure 3.

The input data includes: (1) Actual arrival data, and (2) The
original defect arrival prediction curve without actual data:
This will be the leading data for early defect prediction with
actual data.

We use the transformation function with parameters «, 3,
and ~, as described in Section IV. We introduce another
parameter representing the number of most recent weekly data
points, n,, for the transformation. This will help incorporate

Early defect prediction with actual data: Project D Release B

Early Defect Prediction - Project D Release B
- 5000
i 4500 Predicted Arrival w/o actual
ot Predicted Open e De"\'e"v Date —
e " ' 3500
’ *, | 3000
250 ' =S :
200 : So H el
7 o 000
150 DU . g 200
100 , LB Yo
=7 3 X 1000
50 —e= : i
p : s00
> G o Gl © o o © © °© © o © © b
2 2 2 o° 5 0 >
\\,9 x\.p \\,9 x\1° \\x@\\m&\\'@ \0&\\@1\\@1\\@1\\1& \\,@1‘»\1& IO I
A0S ™ gl AT AT AT T G0 QT A g o AT ot O N

S & &
& & & ¢
5
Sty

o

" 500
Delivery Date 4
. J <])) J O O © S O O O O
S o S O O O o B A A ASY AT S AV SV RSV ASY SV VSV SV
T 5 o S SRR RS St L N Lt
P @A o AP 0 g AR AR AT AT 50T G0 T AN X

Prediction Stability: Project D Release B
Average + 10%

~TN—— i

Average - 10%
Early defect
prediction
Defect trend
analysis =

Average
4500
4000
3500
3000
2500
2000
1500
1000

Defects

Predicted Arrival w/ actual

Fig. 13: Actual open defects with early defect Fig. 14: Early defect prediction with actual data and Fig. 15: Prediction stability: early defect prediction

prediction the leading data

more recent data. The default value is n,, = 10. We will use
the last np actual data points for this transformation. Following
the same algorithm described in Section 3, the optimum set
of «, 3, and ~y values will be obtained to minimize the sum
of distances between actual data and transformed data. The
proposed default values are summarized in Table III.

‘ Parameter ‘ Initial Value ‘ Increment ‘ Max. Iterations ‘

] 1 -0.25 4
5] 0.9 0.025 4
od 0.9 0.025 4

TABLE III: Default values for the transformation parameters

The updated arrival predicted curve and actual and leading
data are in Figure 14. Note that the predicted curve is very
close to the leading data, and both curves are remarkably close
to actual data. It implies that the original prediction without
actual data is very accurate up to this point in time.

VI. PREDICTION STABILITY AND ACCURACY

We now repeat the procedure described in Section V as new
weekly data becomes available. We keep track of the predicted
defects at the delivery date, Do, for each week. A summary
of the results is shown in Figure 15. It also shows the average
of the predicted defects at Do along with +/- 10% limits. It
offers a remarkably stable trend over time and an accuracy of
less than +/- 10%.

We also want to compare the prediction stability with the
defect trend analysis described in Section III. The prediction
stability data for the defect trend analysis are overlaid in Figure
15. It is not stable yet. It usually becomes stable several weeks
before the delivery date, when the system test begins. Figure
15 demonstrates the power of development and test effort data
with previous release data to improve prediction stability and
accuracy.

VII. CONCLUSION

This paper has presented a novel method for an early defect
prediction that transforms development and test effort data
and learns from previous release data to generate a defect
prediction curve. We then extended the defect detection to
cover defect closure and open curves. Key quality metrics
are addressed for deciding whether the software is ready for
delivery. Our proposal is aimed at helping project managers
balance development resources and software quality at the
delivery date during the planning phase. It improves the

48

vs. defect trend analysis

prediction stability and accuracy remarkably compared with
the defect trend analysis based on multiple curves, which
significantly enhances the traditional single curve fitting.

The innovative method has been implemented as the core
engine of a new online analytics tool [12], STAR, for software
quality assurance. STAR has been built thanks to experiences
from engagements with various business groups at Nokia and
through learning the pain points of developing and predicting
defects in large scale software. We invite interested parties to
reach out and try out the tool for their projects.

ACKNOWLEDGMENT

I would like to thank Dr. Rashid Mijumbi, Rory Harpur,
Joseph Good, and Michael Okumoto for their significant
contributions to the work in this paper.

REFERENCES

[1] H. Okamura and T. Dohi, Application of EM Algorithm to NHPP-Based
Software Reliability Assessment with Generalized Failure Count Data.
Mathematics 2021, 9, 985. https://doi.org/10.3390/math9090985

Q. Li, and H. Pham, Modeling software fault-detection and fault-
correction processes by considering the dependencies between fault
amounts, Applied Sciences (Switzerland), 11(15), 2021 [6998]. https:
//doi.org/10.3390/app11156998.

A. Nikora, L. Fiondella and T. Wandji, SFRAT — An Extendable Soft-
ware Reliability Assessment Tool, 2018 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), 2018, pp.
65-70, doi: 10.1109/ISSREW.2018.00-29.

M. R. Lyu. Handbook of Software Reliability Engineering, Computer
Society Press, Los Alamitos, and McGraw-Hill, New York, 1995.

List of software reliability models, Wikipedia, https://en.wikipedia.org/
wiki/List_of_software_reliability_models.

CASRE: a computer-aided software reliability estimation tool. 1992.
doi:10.1109/CASE.1992.200165.

A. L. Goel and K. Okumoto, Time-dependent error-detection rate
model for software reliability and other performance measures, IEEE
Transactions on Reliability, pp. 206-211, 1979.

K. Okumoto, Experience Report: Practical Software Availability Predic-
tion in Telecommunication Industry, Proceedings of 27th IEEE Inter-
national Symposium on Software Reliability Engineering (ISSRE), pp.
331-342, 2016, Ottawa, Canada.

R. Mijumbi, K. Okumoto, A. Asthana, J. Meekel, Recent Advances in
Software Quality Assurance, 2018 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), Oct 2018, pp.
77-82, Memphis, TN, USA.

R. Mijumbi, K. Okumoto, A. Asthana, Software Reliability Assurance
in Practice, Chapter in Wiley Encyclopedia of Electrical and Electronics
Engineering, 2019.

K. Okumoto, Software Quality Assurance as a Service (STAR): A
revolutionary Approach, Two-hour Tutorial at 26th International Con-
ference on Engineering of Complex Computer Systems, Mar 26, 2022,
Hiroshima, Japan. http://iceccs2022.xsrv.jp/.

Software Quality Assurance as a Service (STAR), Sakura Software
Solutions. https://sakurasoftsolutions.com/.

[10]

[11]

[12]

