
Early Software Defect Prediction: Right-Shifting
Software Effort Data into a Defect Curve

Kazuhira Okumoto
Sakura Software Solutions LLC

Naperville, IL USA

kokumoto@sakurasoftsolutions.com

Abstract—Predicting the number of defects in software at
release is a critical need for quality managers to evaluate the
readiness to deliver high-quality software. Even though this is
a well-studied subject, it continues to be challenging in large-
scale projects. This is particularly so during early stages of
the development process when no defect data is available. This
paper proposes a novel approach for defect prediction in early
stages of development. It utilises a software development and
testing plan, and also learns from previous releases of the same
project to predict defects. By producing key quality metrics such
as percentage residual defects and percentage open defects at
delivery, we enable decisions regarding the readiness of a software
product for delivery. Over several years, the approach has been
successfully applied to large-scale software products, which has
helped to evaluate the stability and accuracy of defects predicted
at delivery over time.

Index Terms—Early defect prediction, Software quality assur-
ance, Software reliability growth modeling, Software effort data

I. INTRODUCTION

Project managers want to balance development resource

allocation and software quality at delivery. It is critical to

understand where software defects1 are injected and removed

during the software development process to evaluate software

quality. Figure 1 summarizes defects injected and removed

during the software lifecycle. The process begins with content

(or features) specification, followed by software design, coding

& unit test, and formal testing (such as integration test, feature

test, and system test). As the internal test is winding down,

the software is typically delivered to the customer site for an

acceptance test or joint customer site test, followed by the

deployment for customer operation. Defects are introduced

during requirement specification and code development (i.e.,

design, coding, and unit test). Defects are found and removed

during the entire lifecycle. However, defects found by indepen-

dent testers and customers are typically reported and available

for analysis. A subset of defects during the customer operation

often causes a system outage (or failure), resulting in a full

or partial system downtime. These defects are related to the

software reliability and availability. However, the terms are

often used interchangeably with other types of defects in the

literature.

1In this paper, we use the terms such as defects, faults, and bugs inter-
changeably.

Fig. 1: Software Development Process vs Defect Injection and Removal.
Defect = Faults = Bugs. Outages = Failures.

In this paper, we introduce an innovative method for auto-

matically generating multiple curves for defect prediction. It

provides consistency and accuracy for defect prediction during

the test phase. We offer in-depth technical discussion. It is

entirely different from a traditional single curve representation

of the defect trend.

II. RELATED WORK

Methods for predicting software defects over time are often

called software reliability growth models using defect trend

analysis. It looks at the cumulative defect detection (or arrival)

curve to determine the shape of the curve. Over 220 models

and a few tools (e.g., [1]–[7]) have been established since

the early 1970s, but how to put them in practice remains

unsolved primarily. This is mainly because defect data from

actual projects are not readily available to researchers in the

field. It started with a simple exponential curve [7] for defects

found or detected during a system test phase over 40 years ago.

The assumption is that a software product is developed and

stable. There is a finite number of defects in the software, and

each defect is detected according to an exponential distribution

or a constant rate. The number of defects detected can be

formulated as a non-homogeneous Poisson process (NHPP). It

is simple enough to develop a statistical method for estimating

parameters using the maximum likelihood method [7], [8]. It

represents the defect trend during system tests because the

software content is mainly developed and reasonably stable.

43

2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)

978-1-6654-7679-9/22/$31.00 ©2022 IEEE
DOI 10.1109/ISSREW55968.2022.00037

Since then, it’s been extended to cover the entire test

phase, including feature, integration, functional, and system

tests. The original exponential model has been modified to be

flexible, e.g., substituting a different distribution function into

the exponential distribution function. It accommodates various

shapes of defect data. But it becomes complex. They are

often called S-shaped models [1], [2], e.g., Weibull, Gamma,

and logistic. However, none of the models have a statistical

method of estimating parameters due to the complex nature of

the curve. Curves are usually generated manually by subject

matter experts. It turns out that most S-shaped models cannot

explain an early part of defect data if focused on the latter part

of the defect data. A single curve approach does not appear

sufficient to describe the entire defect data.

Recently we have developed an innovative method [9], [10]

for defect trend analysis. It uses multiple curves instead of a

single curve to describe the entire defect trend over time. It

improved prediction accuracy and stability over the traditional

models—no more single curve fitting. We have developed

an innovative algorithm to automatically identify the trend

changes or inflection points to generate various curves. It’s

now practical in use due to the advancement of computing

technology. We will briefly describe the method in Section

III.

We have developed another innovative method [11] for a

project manager to balance development resources vs. software

quality at the delivery date. It provides defect arrival (or

detection) curves without actual defect data to be used for

an early phase of the project, and hence, it is called an early

defect prediction. It is described in Sections IV and V with or

without actual defect data, respectively. Stability and accuracy

of prediction will be addressed in Section VI.

III. DEFECT TREND ANALYSIS

This section addresses our new innovative method for defect

trend analysis. The earlier version of the technique was intro-

duced in [9], [10]. Since then, we have significantly improved

the algorithm. There are two parts: multiple curve generation

and adjustment for the last curve.

A. Inflection points for generating multiple piece-wise expo-
nential curves

The first step is to find inflection points or points in time

where the defect trend changes significantly. Figure 2 shows

a typical defect trend over time. There are multiple periods

where the trend significantly changes from period to period.

We apply a simple exponential curve as new defect data is

added, keep track of the closeness between the predicted curve

and actual data, and identify the significant change in the

closeness. Maximum likelihood estimates for a and b are

computed for every data point added. Once the inflection

point is found, we move the start date to a new start date

corresponding to the inflection point. Repeating these steps

until the end of the defect data, we will find the final predicted

curve, as shown in Figure 3. The algorithm in Fig. 4 provides a

high-level procedure for finding inflection points and multiple

Fig. 2: Typical defect trend curve with
multiple periods of various sub-trends

Fig. 3: Predicted Curve and Illustra-
tion of the last curve modification

curves. It is a series of piece-wise exponential models with a

general form of:

mi(ti) = ai(1– exp(−biti)) +mi−1(ti−1) (1)

where mi(ti) is the cumulative defect data at time or week

ti for period i. Parameters ai and bi parameters represent

total defects and detection rate for period i. The multiple

curves represent a software development process where each

subset of software modules is added to the test suite as it

becomes available for testing. It creates various waves of

defects being detected during the test phase over time. A single

curve approach will not be able to accomplish the defect trend.

The advancement of computing technology makes complex

computing possible.

B. Adjustment for the last curve

Most models for trend analysis require a relatively large

number of data points, i.e., weeks and several weeks closer

to the delivery date. In other words, the data trend must be

leveled off for the models to be effective, as illustrated in

Figure 3. In practice, there are some cases (especially during

an early test phase) where the last curve looks like a straight

line. This creates a problem since we are expecting a finite

number of defects. The latest curve of the multi-curve method

needs adjustment to start leveling off several weeks before

delivery. The adjustment is to extend the straight line to several

weeks before the delivery date and generate an exponential

curve that meets a target of 15% residual defects at the delivery

date, as highlighted in Figure 3. In other words, the initial

arrival rate at r0 is the slope:

a× b = r0 (2)

Note that we have

% Residual Defects =
Total Defects− Defects at D2

Total Defects
(3)

Values for a and b can be determined by solving eq. 2 and

3. Past historical project data can specify values for weeks to

the delivery date, and % residual defects.

IV. EARLY DEFECT PREDICTION WITHOUT ACTUAL

DEFECT DATA

Defect trend analysis is relatively simple and easy to use in

practice. However, it has some limitations. It requires defect

data several weeks before the delivery date for the prediction to

become stable. It is not appropriate for defect prediction during

the planning phase where actual defect data is not available,

44

Fig. 4: A procedure for finding inflection points and multiple curves

Fig. 5: Adjusted normalized effort curve vs. defect arrival curve

called an early defect prediction. We will introduce a concept

of leading data to assist in early defect prediction. We have

investigated possible leading data last several years based on

the availability and the correlation with defects and concluded

effort data is best suited for this purpose.

This section describes specific steps for early defect pre-

diction, including closure and open curve predictions. We

also validate the predicted curves by overlaying actual data.

An overview of the process is illustrated in Figure 5. It

incorporates previous release data using effort data as leading

data.

A. Input data

Project milestone dates are quired. The start date, D0, repre-

sents the start of testing. We expect to see defect data coming

in shortly after D0. A project typically has two delivery

dates: Delivery for trial (D1) and Delivery for commercial

deployment (D2). In addition, we need two sets of data from

the previous release, i.e., defect data and effort data. Defect

data is typically sorted every week in a cumulated format. Two

types of effort data (development and test) are readily available

during the planning phase in practice. It is usually measured in

hours of effort required for completing a development activity,

typically at a sub-feature level.

• Development effort data: represents the complexity of the

software content. The development effort curve represents

how the content is developed over time. It is used to

predict the number of defects.

• Test effort data: represents the test progress if cumulative

test effort is normalized. The defect detection or find rate

is highly related to the test progress. In other words, the

shape of the defect find curve is closely related to the test

progress curve.

Typical cumulative development and test effort data are

shown in Figure 6. Note that there is a significant gap between

the development and test effort curves. For a large-scale

development, many low-level modules need to be integrated

for a feature to be ready for the test. The defects are reported

from feature-level tests.

B. Preprocessing

We first prepare effort data suitable for the prediction algo-

rithm by combining development and test effort to generate

the leading data.

1) Normalizing development effort data by the test
progress: We first normalize development effort data by the

test progress, which is the test effort curve divided by the

maximum value of the test effort data. It is calculated as:

%Test progress =
Test effort data

Max of test effort data
(4)

NDE = max(DE)×%Test progress (5)

Where DE is the development effort and NDE is the nor-

malised development effort. The normalized development ef-

fort curve represents how the software content is tested over

time. It is shown in Figure 6.

2) Adjusting the tail end of the normalized development
effort curve: Next, we will have to adjust the tail end of the

normalized curve since it shows a rapidly flattening trend.

This is because test effort represents internal test activities.

Defect data usually includes those found by customer testing

and operation. The adjustment will compensate for customer

defects. The adjustment can be made using the trend analysis

algorithm discussed in Section III.

3) Calculation of defect density: We are now ready to cal-

culate defect densities at D1 and D2 using the defect curve and

the adjusted normalized effort curve. An interpolation method

is used for identifying values at D1 and D2, respectively. We

can then calculate defect density DD as:

DD =
Defects

Effort Hours
(6)

Figure 7 shows the adjusted normalized effort curve with

overlaid defect arrival curve. As mentioned earlier, the defect

curve is highly related to the effort curve.

4) Target defect values at the delivery date: We perform

steps described above for the effort data from the current

release to derive the adjusted normal development effort curve.

Using the defect densities, DD, obtained in 6, we can compute

target defects (TD) at D1 and D2 for the current release as:

TD = Effort Hours× DD (7)

45

Fig. 6: Effort data: Development, test,
normalized development

Fig. 7: Normalized development effort
curve with the adjustment

Fig. 8: Target defects vs. adjusted nor-
malized development effort curve

Fig. 9: Early defect prediction with
actual defects overlaid

C. Transformation algorithm for early defect prediction

We now have input data (as shown in Figure 8) ready for

generating an early defect prediction curve for the current

release. We will use the logic (as described in [9]) derived

from the Quantile-Quantile (Q-Q) plot, i.e., a defect curve

is highly correlated to a leading curve, which is the effort

data in this case. The transformation function contains two

elements: horizontal shift and vertical shift. In other words, the

leading curve (i.e., the effort curve) is transformed by shifting

it horizontally and vertically to go through the target defects

(TD) at D1 and D2 as closely as possible. The transformation

function from (x, y) coordinates to (xnew, ynew) is described

in eq. 8 and eq. 9 for horizontal shift and vertical shift

respectively.

xnew = α+ βx (8)

ynew = γy (9)

The parameter α represents the constant delay in weeks

from the effort curve to the defect curve, and β represents

the additional delay in the defect curve. The parameter γ
is determined as a ratio of defects and effort hours used

for the best-fitted curve. It means defects per effort hour.

It is a non-linear optimization problem with three variables

(or parameters) and two data points to minimize the sum of

distances between predicted defects and target defects at D1

and D2. We can solve this problem iteratively with numerical

analysis. It requires three-level loops and several iterations for

each level. We need to set up the initial value, the increment,

and the maximum number of iterations for each level. Table I

shows default values developed by a trial and error method for

several different data sets, where DD2 is the defect density at

the delivery date D2.

Parameter Initial Value Increment Max. Iterations

α 4 -0.5 10
β 0.7 0.05 10
γ DD2 − 0.9 0.01 10

TABLE I: Default values for the transformation parameters

These numbers can be implemented as separate parame-

ters to be changed according to the required accuracy. Our

proposed default values are considered reasonable in practice

based on our experience. For each level we keep track of

minimum sum of distances (SD) between target defect values

(TD) and predicted defect values (PD) at D1 and D2. It is

calculated as:

SD = w × |TD1 − PD1|+ (1− w)× |TD2 − PD2| (10)

Where w represents a weight factor with a default value

of 0.8. Note that target defects (TD) can be computed from

7, and predicted defect values (PD) are calculated using the

transformation functions 8 and 9. Note that the transformed

curve is no longer aligned with the original x-axis due to 8.

We use an interpolation method to calculate exact PD values

at D1 and D2.

The following three levels of iterations will be performed.

• Step 1: We first begin the iteration at Level 3. We

calculate the SD value and compare it with the previous

iteration. The SD values at Level 3 (SD3) are expected

to decrease until the minimum value is found. It will stop

when the current SD3 is larger than the previous SD3.

We set the last SD3 as the min(SD3) and the values of

α, β, and γ.

• Step 2: We set min(SD2) = min(SD3) and then move

to the next value of Level 2 and repeat the Level 3

operation. The SD values at Level 2 (SD2) are expected

to decrease until the minimum value is found. It will stop

when the current SD2 is larger than the previous SD2.

We set the last SD2 as the min(SD2) and the values of

α, β, and γ.

• Step 3: We set min(SD1) = min(SD2) and then move

to the next value of Level 1 and repeat the Level 2 and

Level 3 operations. The SD values at Level 1 (SD1) are

expected to decrease until the minimum value is found. It

will stop when the current SD1 is larger than the previous

SD1. We set the last SD1 as the min(SD1) and the

values of α, β, and γ.

The above iterative procedure will find the global minimum

and respective parameter values. We re-calculate the final

predicted curve with the final parameter values. Note that the

last curve will need to be converted to weekly data via an

interpolation method since the transformation shifted the time

scale. The final defect arrival curve is shown in Figure 9, where

the curve should be closely going through the target defects at

D1 and D2. We can also overlay actual defect data to validate

the early defect prediction, as shown in Figure 9. We have

46

Fig. 10: Closure curve prediction vs. actual closure
data

Fig. 11: Open defect curves: Actual defects vs.
predicted defects

Fig. 12: Actual arrival and closure data with early
defect prediction

completed an early prediction for the defect arrival curve. We

are now ready to look at a closure curve prediction.

D. Closure curve prediction

Input data are the predicted arrival curve as the leading

data and actual closure data, as shown in Figure 10. We will

apply the transformation function described in Section IV-C.

We have found that the predicted closure curve can be derived

by shifting the leading data to the right based on many project

data. This is a particular case where β = 1 and γ = 1. We set

several actual closure data points to find the value α, which

provides the best curve. The default value is 2. That is, the

last 2 data points are used. In this example, we found α = 2.3,

which means the closure prediction is derived by shifting the

arrival curve by 2.3 weeks. Figure 10 shows the predicted

closure curve along with actual data. It visually demonstrates

the validity of the algorithm. This shifted value derived from

previous release data will be used for early closure prediction.

E. Open curve prediction

One of the most critical metrics in practice is the number

of open (or backlog) defects. It represents the defects that are

still not closed (or fixed). Ideally, we want all detected defects

to be fixed (or corrected) by delivery. The open defect curve

can be derived as the difference between the arrival curve and

the closure curve, i.e.,

Open Defects = Arrival Defects− Closure Defects (11)

Using the same data as in Section IV-D, we calculated the

open defect curves for actual and predicted values from 11.

Figure 11 shows the actual data closely following the predicted

curve.

F. Outputs

In Sections IV-C, IV-D and IV-E, we demonstrated the

algorithm to generate the following early defect prediction

curves without actual data: Predicted arrival curve, Predicted

closure curve, and Predicted open curve

These curves are illustrated in Figure 12 for the arrival and

closure curves and Figure 13 for the open curve, respectively.

They also show actual data for arrival, closure, and open curves

overlaid with the predicted curves, respectively. Both actual

data are closely following the predicted curves. Using these

curves, we can derive key quality metrics.

• % Residual defects: We normalize residual defects by

the total defects to use this metric for other projects. It

is defined as:

% Residual defects =
Total defects− Defects found

Total defects
(12)

This metric is used to determine if we find enough

defects. Our proposed threshold values based on the

experience are as follows: It is acceptable if less than

or equal to 15%, at risk if greater than 25%, and warning

for in-between.

• % Open defects: We normalize open defects by defects

found, which is defined as:

% Open defects =
Total defects− Defects fixed

Defects found
(13)

This metric is used to determine if we fix enough defects.

Our proposed threshold values based on the experience

are as follows: It is acceptable if less than or equal to 5%,

at risk if greater than 10%, and warning for in-between.

Combining the above two quality metrics, we can now make

an intelligent decision about whether the software release is

ready for delivery. A sample of metrics data is summarized in

Table II.

Will we be ready for delivery on time with acceptable quality ?

TABLE II: Sample metrics for the release readiness evaluation

V. EARLY DEFECT PREDICTION WITH ACTUAL DEFECT

DATA

As the test activity begins, defect reports start coming in.

We want to update the original defect arrival prediction curve

with actual data. We will follow the latter part of the process

described in Figure 3.

The input data includes: (1) Actual arrival data, and (2) The

original defect arrival prediction curve without actual data:

This will be the leading data for early defect prediction with

actual data.

We use the transformation function with parameters α, β,

and γ, as described in Section IV. We introduce another

parameter representing the number of most recent weekly data

points, np, for the transformation. This will help incorporate

47

Fig. 13: Actual open defects with early defect
prediction

Fig. 14: Early defect prediction with actual data and
the leading data

Fig. 15: Prediction stability: early defect prediction
vs. defect trend analysis

more recent data. The default value is np = 10. We will use

the last np actual data points for this transformation. Following

the same algorithm described in Section 3, the optimum set

of α, β, and γ values will be obtained to minimize the sum

of distances between actual data and transformed data. The

proposed default values are summarized in Table III.

Parameter Initial Value Increment Max. Iterations

α 1 -0.25 4
β 0.9 0.025 4
γ 0.9 0.025 4

TABLE III: Default values for the transformation parameters

The updated arrival predicted curve and actual and leading

data are in Figure 14. Note that the predicted curve is very

close to the leading data, and both curves are remarkably close

to actual data. It implies that the original prediction without

actual data is very accurate up to this point in time.

VI. PREDICTION STABILITY AND ACCURACY

We now repeat the procedure described in Section V as new

weekly data becomes available. We keep track of the predicted

defects at the delivery date, D2, for each week. A summary

of the results is shown in Figure 15. It also shows the average

of the predicted defects at D2 along with +/- 10% limits. It

offers a remarkably stable trend over time and an accuracy of

less than +/- 10%.

We also want to compare the prediction stability with the

defect trend analysis described in Section III. The prediction

stability data for the defect trend analysis are overlaid in Figure

15. It is not stable yet. It usually becomes stable several weeks

before the delivery date, when the system test begins. Figure

15 demonstrates the power of development and test effort data

with previous release data to improve prediction stability and

accuracy.

VII. CONCLUSION

This paper has presented a novel method for an early defect

prediction that transforms development and test effort data

and learns from previous release data to generate a defect

prediction curve. We then extended the defect detection to

cover defect closure and open curves. Key quality metrics

are addressed for deciding whether the software is ready for

delivery. Our proposal is aimed at helping project managers

balance development resources and software quality at the

delivery date during the planning phase. It improves the

prediction stability and accuracy remarkably compared with

the defect trend analysis based on multiple curves, which

significantly enhances the traditional single curve fitting.

The innovative method has been implemented as the core

engine of a new online analytics tool [12], STAR, for software

quality assurance. STAR has been built thanks to experiences

from engagements with various business groups at Nokia and

through learning the pain points of developing and predicting

defects in large scale software. We invite interested parties to

reach out and try out the tool for their projects.

ACKNOWLEDGMENT

I would like to thank Dr. Rashid Mijumbi, Rory Harpur,

Joseph Good, and Michael Okumoto for their significant

contributions to the work in this paper.

REFERENCES

[1] H. Okamura and T. Dohi, Application of EM Algorithm to NHPP-Based
Software Reliability Assessment with Generalized Failure Count Data.
Mathematics 2021, 9, 985. https://doi.org/10.3390/math9090985

[2] Q. Li, and H. Pham, Modeling software fault-detection and fault-
correction processes by considering the dependencies between fault
amounts, Applied Sciences (Switzerland), 11(15), 2021 [6998]. https:
//doi.org/10.3390/app11156998.

[3] A. Nikora, L. Fiondella and T. Wandji, SFRAT – An Extendable Soft-
ware Reliability Assessment Tool, 2018 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), 2018, pp.
65-70, doi: 10.1109/ISSREW.2018.00-29.

[4] M. R. Lyu. Handbook of Software Reliability Engineering, Computer
Society Press, Los Alamitos, and McGraw-Hill, New York, 1995.

[5] List of software reliability models, Wikipedia, https://en.wikipedia.org/
wiki/List of software reliability models.

[6] CASRE: a computer-aided software reliability estimation tool. 1992.
doi:10.1109/CASE.1992.200165.

[7] A. L. Goel and K. Okumoto, Time-dependent error-detection rate
model for software reliability and other performance measures, IEEE
Transactions on Reliability, pp. 206-211, 1979.

[8] K. Okumoto, Experience Report: Practical Software Availability Predic-
tion in Telecommunication Industry, Proceedings of 27th IEEE Inter-
national Symposium on Software Reliability Engineering (ISSRE), pp.
331-342, 2016, Ottawa, Canada.

[9] R. Mijumbi, K. Okumoto, A. Asthana, J. Meekel, Recent Advances in
Software Quality Assurance, 2018 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), Oct 2018, pp.
77–82, Memphis, TN, USA.

[10] R. Mijumbi, K. Okumoto, A. Asthana, Software Reliability Assurance
in Practice, Chapter in Wiley Encyclopedia of Electrical and Electronics
Engineering, 2019.

[11] K. Okumoto, Software Quality Assurance as a Service (STAR): A
revolutionary Approach, Two-hour Tutorial at 26th International Con-
ference on Engineering of Complex Computer Systems, Mar 26, 2022,
Hiroshima, Japan. http://iceccs2022.xsrv.jp/.

[12] Software Quality Assurance as a Service (STAR), Sakura Software
Solutions. https://sakurasoftsolutions.com/.

48

